IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37501-0.html
   My bibliography  Save this article

DAXX drives de novo lipogenesis and contributes to tumorigenesis

Author

Listed:
  • Iqbal Mahmud

    (University of Florida College of Medicine
    University of Florida
    University of Florida College of Medicine
    University of Texas MD Anderson Cancer Center)

  • Guimei Tian

    (University of Florida College of Medicine)

  • Jia Wang

    (University of Florida College of Medicine
    The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital)

  • Tarun E. Hutchinson

    (University of Florida College of Medicine)

  • Brandon J. Kim

    (University of Florida College of Medicine)

  • Nikee Awasthee

    (University of Florida College of Medicine)

  • Seth Hale

    (University of Florida College of Medicine)

  • Chengcheng Meng

    (University of Florida College of Medicine)

  • Allison Moore

    (University of Florida College of Medicine)

  • Liming Zhao

    (University of Florida College of Medicine)

  • Jessica E. Lewis

    (University of Florida College of Medicine)

  • Aaron Waddell

    (University of Florida College of Medicine)

  • Shangtao Wu

    (University of Florida College of Medicine)

  • Julia M. Steger

    (University of Florida College of Medicine)

  • McKenzie L. Lydon

    (University of Florida College of Medicine)

  • Aaron Chait

    (University of Florida College of Medicine)

  • Lisa Y. Zhao

    (University of Florida College of Medicine
    University of Florida College of Medicine)

  • Haocheng Ding

    (University of Florida)

  • Jian-Liang Li

    (National Institute of Environmental Health Sciences)

  • Hamsa Thayele Purayil

    (University of Florida College of Medicine)

  • Zhiguang Huo

    (University of Florida)

  • Yehia Daaka

    (University of Florida College of Medicine)

  • Timothy J. Garrett

    (University of Florida
    University of Florida College of Medicine)

  • Daiqing Liao

    (University of Florida College of Medicine)

Abstract

Cancer cells exhibit elevated lipid synthesis. In breast and other cancer types, genes involved in lipid production are highly upregulated, but the mechanisms that control their expression remain poorly understood. Using integrated transcriptomic, lipidomic, and molecular studies, here we report that DAXX is a regulator of oncogenic lipogenesis. DAXX depletion attenuates, while its overexpression enhances, lipogenic gene expression, lipogenesis, and tumor growth. Mechanistically, DAXX interacts with SREBP1 and SREBP2 and activates SREBP-mediated transcription. DAXX associates with lipogenic gene promoters through SREBPs. Underscoring the critical roles for the DAXX-SREBP interaction for lipogenesis, SREBP2 knockdown attenuates tumor growth in cells with DAXX overexpression, and DAXX mutants unable to bind SREBP1/2 have weakened activity in promoting lipogenesis and tumor growth. Remarkably, a DAXX mutant deficient of SUMO-binding fails to activate SREBP1/2 and lipogenesis due to impaired SREBP binding and chromatin recruitment and is defective of stimulating tumorigenesis. Hence, DAXX’s SUMO-binding activity is critical to oncogenic lipogenesis. Notably, a peptide corresponding to DAXX’s C-terminal SUMO-interacting motif (SIM2) is cell-membrane permeable, disrupts the DAXX-SREBP1/2 interactions, and inhibits lipogenesis and tumor growth. These results establish DAXX as a regulator of lipogenesis and a potential therapeutic target for cancer therapy.

Suggested Citation

  • Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37501-0
    DOI: 10.1038/s41467-023-37501-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37501-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37501-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liangqian Huang & Trisha Agrawal & Guixin Zhu & Sixiang Yu & Liming Tao & JiaBei Lin & Ronen Marmorstein & James Shorter & Xiaolu Yang, 2021. "DAXX represents a new type of protein-folding enabler," Nature, Nature, vol. 597(7874), pages 132-137, September.
    2. Simon J. Elsässer & Kyung-Min Noh & Nichole Diaz & C. David Allis & Laura A. Banaszynski, 2015. "Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells," Nature, Nature, vol. 522(7555), pages 240-244, June.
    3. Dominik Hoelper & Hongda Huang & Aayushi Y. Jain & Dinshaw J. Patel & Peter W. Lewis, 2017. "Structural and mechanistic insights into ATRX-dependent and -independent functions of the histone chaperone DAXX," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    4. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    5. Yi Yang & Thea L. Willis & Robert W. Button & Conor J. Strang & Yuhua Fu & Xue Wen & Portia R. C. Grayson & Tracey Evans & Rebecca J. Sipthorpe & Sheridan L. Roberts & Bing Hu & Jianke Zhang & Boxun L, 2019. "Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    6. Xin Jin & Zelalem Demere & Karthik Nair & Ahmed Ali & Gino B. Ferraro & Ted Natoli & Amy Deik & Lia Petronio & Andrew A. Tang & Cong Zhu & Li Wang & Danny Rosenberg & Vamsi Mangena & Jennifer Roth & K, 2020. "A metastasis map of human cancer cell lines," Nature, Nature, vol. 588(7837), pages 331-336, December.
    7. Xue Gao & Shu-Hai Lin & Feng Ren & Jin-Tao Li & Jia-Jia Chen & Chuan-Bo Yao & Hong-Bin Yang & Shu-Xia Jiang & Guo-Quan Yan & Di Wang & Yi Wang & Ying Liu & Zongwei Cai & Ying-Ying Xu & Jing Chen & Wen, 2016. "Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
    8. Jorge A. Benitez & Jianhui Ma & Matteo D’Antonio & Antonia Boyer & Maria Fernanda Camargo & Ciro Zanca & Stephen Kelly & Alireza Khodadadi-Jamayran & Nathan M. Jameson & Michael Andersen & Hrvoje Mile, 2017. "PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3," Nature Communications, Nature, vol. 8(1), pages 1-15, August.
    9. Simon J. Elsässer & Hongda Huang & Peter W. Lewis & Jason W. Chin & C. David Allis & Dinshaw J. Patel, 2012. "DAXX envelops a histone H3.3–H4 dimer for H3.3-specific recognition," Nature, Nature, vol. 491(7425), pages 560-565, November.
    10. Nitish Gulve & Chenhe Su & Zhong Deng & Samantha S. Soldan & Olga Vladimirova & Jayamanna Wickramasinghe & Hongwu Zheng & Andrew V. Kossenkov & Paul. M. Lieberman, 2022. "DAXX-ATRX regulation of p53 chromatin binding and DNA damage response," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Megan Young & Laurent Beziaud & Pierre Dessen & Angela Madurga Alonso & Albert Santamaria-Martínez & Joerg Huelsken, 2023. "Metabolic dependencies of metastasis-initiating cells in female breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Sophia Groh & Anna Viktoria Milton & Lisa Katherina Marinelli & Cara V. Sickinger & Angela Russo & Heike Bollig & Gustavo Pereira de Almeida & Andreas Schmidt & Ignasi Forné & Axel Imhof & Gunnar Scho, 2021. "Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Kentaro Mochizuki & Jafar Sharif & Kenjiro Shirane & Kousuke Uranishi & Aaron B. Bogutz & Sanne M. Janssen & Ayumu Suzuki & Akihiko Okuda & Haruhiko Koseki & Matthew C. Lorincz, 2021. "Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    5. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    6. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    7. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    8. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    11. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    12. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    13. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    14. Erminia Donnarumma & Michael Kohlhaas & Elodie Vimont & Etienne Kornobis & Thibault Chaze & Quentin Giai Gianetto & Mariette Matondo & Maryse Moya-Nilges & Christoph Maack & Timothy Wai, 2022. "Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    15. J. T. Gene Hwang & Jing Qiu & Zhigen Zhao, 2009. "Empirical Bayes confidence intervals shrinking both means and variances," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 265-285, January.
    16. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
    17. Saori Kashima & Masatoshi Matsumoto & Takahiko Ogawa & Akira Eboshida & Keisuke Takeuchi, 2012. "The Impact of Travel Time on Geographic Distribution of Dialysis Patients," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-8, October.
    18. Sahra Uygun & Cheng Peng & Melissa D Lehti-Shiu & Robert L Last & Shin-Han Shiu, 2016. "Utility and Limitations of Using Gene Expression Data to Identify Functional Associations," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    19. Cherif Ben Hamda & Raphael Sangeda & Liberata Mwita & Ayton Meintjes & Siana Nkya & Sumir Panji & Nicola Mulder & Lamia Guizani-Tabbane & Alia Benkahla & Julie Makani & Kais Ghedira & H3ABioNet Consor, 2018. "A common molecular signature of patients with sickle cell disease revealed by microarray meta-analysis and a genome-wide association study," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
    20. Tony Marion & Husni Elbahesh & Paul G Thomas & John P DeVincenzo & Richard Webby & Klaus Schughart, 2016. "Respiratory Mucosal Proteome Quantification in Human Influenza Infections," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37501-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.