IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v17y2013i2p305-324.html
   My bibliography  Save this article

Discretely sampled variance and volatility swaps versus their continuous approximations

Author

Listed:
  • Robert Jarrow
  • Younes Kchia
  • Martin Larsson
  • Philip Protter

Abstract

Discretely sampled variance and volatility swaps trade actively in OTC markets. To price these swaps, the continuously sampled approximation is often used to simplify the computations. The purpose of this paper is to study the conditions under which this approximation is valid. Our first set of theorems characterize the conditions under which the discretely sampled swap values are finite, given that the values of the continuous approximations exist. Surprisingly, for some otherwise reasonable price processes, the discretely sampled swap prices do not exist, thereby invalidating the approximation. Examples are provided. Assuming further that both swap values exist, we study sufficient conditions under which the discretely sampled values converge to their continuous counterparts. Because of its popularity in the literature, we apply our theorems to the 3/2 stochastic volatility model. Although we can show finiteness of all swap values, we can prove convergence of the approximation only for some parameter values. Copyright Springer-Verlag 2013

Suggested Citation

  • Robert Jarrow & Younes Kchia & Martin Larsson & Philip Protter, 2013. "Discretely sampled variance and volatility swaps versus their continuous approximations," Finance and Stochastics, Springer, vol. 17(2), pages 305-324, April.
  • Handle: RePEc:spr:finsto:v:17:y:2013:i:2:p:305-324
    DOI: 10.1007/s00780-012-0183-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-012-0183-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-012-0183-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Carr & Roger Lee & Liuren Wu, 2012. "Variance swaps on time-changed Lévy processes," Finance and Stochastics, Springer, vol. 16(2), pages 335-355, April.
    2. Leunglung Chan & Eckhard Platen, 2010. "Exact Pricing and Hedging Formulas of Long Dated Variance Swaps under a $3/2$ Volatility Model," Papers 1007.2968, arXiv.org, revised Jan 2011.
    3. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    4. Mark Broadie & Ashish Jain, 2008. "The Effect Of Jumps And Discrete Sampling On Volatility And Variance Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(08), pages 761-797.
    5. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    6. Peter Carr & Roger Lee, 2009. "Volatility Derivatives," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 319-339, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2013. "Shapes of implied volatility with positive mass at zero," Papers 1310.1020, arXiv.org, revised May 2017.
    2. Dan Pirjol & Xiaoyu Wang & Lingjiong Zhu, 2024. "Short-maturity options on realized variance in local-stochastic volatility models," Papers 2411.02520, arXiv.org.
    3. Carol Alexander & Johannes Rauch, 2017. "The Aggregation Property and its Applications to Realised Higher Moments," Papers 1709.08188, arXiv.org.
    4. Wu, Bin & Chen, Pengzhan & Ye, Wuyi, 2024. "Variance swaps with mean reversion and multi-factor variance," European Journal of Operational Research, Elsevier, vol. 315(1), pages 191-212.
    5. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
    6. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    7. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    8. Zhe Zhao & Zhenyu Cui & Ionuţ Florescu, 2018. "VIX derivatives valuation and estimation based on closed-form series expansions," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-18, June.
    9. Carol Alexander & Johannes Rauch, 2014. "Model-Free Discretisation-Invariant Swaps and S&P 500 Higher-Moment Risk Premia," Papers 1404.1351, arXiv.org, revised Feb 2016.
    10. Wang, Xingchun & Fu, Jianping & Wang, Guanying & Wang, Yongjin, 2015. "Quadratic hedging strategies for volatility swaps," Finance Research Letters, Elsevier, vol. 15(C), pages 125-132.
    11. Carol Alexander & Johannes Rauch, 2016. "Model-Free Discretisation-Invariant Swap Contracts," Papers 1602.00235, arXiv.org, revised Apr 2016.
    12. David Hobson & Martin Klimmek, 2011. "Model independent hedging strategies for variance swaps," Papers 1104.4010, arXiv.org, revised May 2011.
    13. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2017. "Shapes of implied volatility with positive mass at zero," Working Papers 2017-77, Center for Research in Economics and Statistics.
    14. Alexander, Carol & Rauch, Johannes, 2021. "A general property for time aggregation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 536-548.
    15. Carole Bernard & Zhenyu Cui, 2013. "Prices and Asymptotics for Discrete Variance Swaps," Papers 1305.7092, arXiv.org.
    16. Wang, Xingchun, 2016. "Catastrophe equity put options with target variance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 79-86.
    17. Alexandru Badescu & Zhenyu Cui & Juan-Pablo Ortega, 2019. "Closed-form variance swap prices under general affine GARCH models and their continuous-time limits," Annals of Operations Research, Springer, vol. 282(1), pages 27-57, November.
    18. Carole Bernard & Zhenyu Cui & Don McLeish, 2013. "Convergence of the discrete variance swap in time-homogeneous diffusion models," Papers 1310.0099, arXiv.org.
    19. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    20. Aït-Sahalia, Yacine & Karaman, Mustafa & Mancini, Loriano, 2020. "The term structure of equity and variance risk premia," Journal of Econometrics, Elsevier, vol. 219(2), pages 204-230.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wendong Zheng & Chi Hung Yuen & Yue Kuen Kwok, 2016. "Recursive Algorithms For Pricing Discrete Variance Options And Volatility Swaps Under Time-Changed Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-29, March.
    2. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    3. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    4. Baldeaux, Jan & Grasselli, Martino & Platen, Eckhard, 2015. "Pricing currency derivatives under the benchmark approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 34-48.
    5. Leunglung Chan & Eckhard Platen, 2010. "Exact Pricing and Hedging Formulas of Long Dated Variance Swaps under a $3/2$ Volatility Model," Papers 1007.2968, arXiv.org, revised Jan 2011.
    6. Andrew Papanicolaou, 2021. "Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options," Papers 2101.00299, arXiv.org, revised Mar 2021.
    7. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.
    8. Chi Hung Yuen & Wendong Zheng & Yue Kuen Kwok, 2015. "Pricing Exotic Discrete Variance Swaps under the 3/2-Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 421-449, November.
    9. Alexander, Carol & Rauch, Johannes, 2021. "A general property for time aggregation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 536-548.
    10. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    11. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    12. Zhe Zhao & Zhenyu Cui & Ionuţ Florescu, 2018. "VIX derivatives valuation and estimation based on closed-form series expansions," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-18, June.
    13. Weiyi Liu & Song‐Ping Zhu, 2019. "Pricing variance swaps under the Hawkes jump‐diffusion process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 635-655, June.
    14. A. Papanicolaou, 2016. "Analysis of VIX Markets with a Time-Spread Portfolio," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 374-408, September.
    15. Carol Alexander & Johannes Rauch, 2016. "Model-Free Discretisation-Invariant Swap Contracts," Papers 1602.00235, arXiv.org, revised Apr 2016.
    16. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    17. Hoyong Choi & Philippe Mueller & Andrea Vedolin, 2017. "Bond Variance Risk Premiums," Review of Finance, European Finance Association, vol. 21(3), pages 987-1022.
    18. Ah-Reum Han & Jeong-Hoon Kim & See-Woo Kim, 2021. "Variance Swaps with Deterministic and Stochastic Correlations," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1059-1092, April.
    19. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    20. Jan Baldeaux & Alexander Badran, 2012. "Consistent Modeling of VIX and Equity Derivatives Using a 3/2 Plus Jumps Model," Research Paper Series 306, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    Keywords

    Variance swaps; Volatility swaps; NFLVR; Semimartingales; 60G35; 60G44; C65; C69; G12;
    All these keywords.

    JEL classification:

    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:17:y:2013:i:2:p:305-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.