IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v9y2023i1d10.1186_s40854-022-00423-9.html
   My bibliography  Save this article

Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach

Author

Listed:
  • Li-Chen Cheng

    (National Taipei University of Technology)

  • Wei-Ting Lu

    (National Taipei University of Technology)

  • Benjamin Yeo

    (Seattle University)

Abstract

In 2021, the abnormal short-term price fluctuations of GameStop, which were triggered by internet stock discussions, drew the attention of academics, financial analysts, and stock trading commissions alike, prompting calls to address such events and maintain market stability. However, the impact of stock discussions on volatile trading behavior has received comparatively less attention than traditional fundamentals. Furthermore, data mining methods are less often used to predict stock trading despite their higher accuracy. This study adopts an innovative approach using social media data to obtain stock rumors, and then trains three decision trees to demonstrate the impact of rumor propagation on stock trading behavior. Our findings show that rumor propagation outperforms traditional fundamentals in predicting abnormal trading behavior. The study serves as an impetus for further research using data mining as a method of inquiry.

Suggested Citation

  • Li-Chen Cheng & Wei-Ting Lu & Benjamin Yeo, 2023. "Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
  • Handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00423-9
    DOI: 10.1186/s40854-022-00423-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-022-00423-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-022-00423-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01835164, HAL.
    2. Onder Ozgur & Erdal Tanas Karagol & Fatih Cemil Ozbugday, 2021. "Machine learning approach to drivers of bank lending: evidence from an emerging economy," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-29, December.
    3. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Post-Print halshs-01889154, HAL.
    4. Nguyen, Bang Dang & Nielsen, Kasper Meisner, 2010. "The value of independent directors: Evidence from sudden deaths," Journal of Financial Economics, Elsevier, vol. 98(3), pages 550-567, December.
    5. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Working Papers 2018:08, Department of Economics, University of Venice "Ca' Foscari".
    6. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01719983, HAL.
    7. Oberlechner, Thomas & Hocking, Sam, 2004. "Information sources, news, and rumors in financial markets: Insights into the foreign exchange market," Journal of Economic Psychology, Elsevier, vol. 25(3), pages 407-424, June.
    8. Li, Yanhong & Kou, Gang & Li, Guangxu & Peng, Yi, 2022. "Consensus reaching process in large-scale group decision making based on bounded confidence and social network," European Journal of Operational Research, Elsevier, vol. 303(2), pages 790-802.
    9. Umar, Zaghum & Gubareva, Mariya & Yousaf, Imran & Ali, Shoaib, 2021. "A tale of company fundamentals vs sentiment driven pricing: The case of GameStop," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    10. Yilmaz, Neslihan & Mazzeo, Michael A., 2014. "The effect of CEO overconfidence on turnover abnormal returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 3(C), pages 11-21.
    11. Kou, Gang & Yüksel, Serhat & Dinçer, Hasan, 2022. "Inventive problem-solving map of innovative carbon emission strategies for solar energy-based transportation investment projects," Applied Energy, Elsevier, vol. 311(C).
    12. Tomasz Piotr Wisniewski & Brendan John Lambe & Alexandra Dias, 2020. "The Influence of General Strikes against Government on Stock Market Behavior," Scottish Journal of Political Economy, Scottish Economic Society, vol. 67(1), pages 72-99, February.
    13. Xi Zhang & Yunjia Zhang & Senzhang Wang & Yuntao Yao & Binxing Fang & Philip S. Yu, 2018. "Improving Stock Market Prediction via Heterogeneous Information Fusion," Papers 1801.00588, arXiv.org.
    14. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Post-Print halshs-01835164, HAL.
    15. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01889154, HAL.
    16. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Post-Print halshs-01719983, HAL.
    17. Lyócsa, Štefan & Baumöhl, Eduard & Výrost, Tomáš, 2022. "YOLO trading: Riding with the herd during the GameStop episode," Finance Research Letters, Elsevier, vol. 46(PA).
    18. Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    19. Peter Martey Addo & Dominique Guégan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Documents de travail du Centre d'Economie de la Sorbonne 18003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    20. Verma, Rahul & Verma, Priti, 2007. "Noise trading and stock market volatility," Journal of Multinational Financial Management, Elsevier, vol. 17(3), pages 231-243, July.
    21. Kim, Samuel Seongseop & Timothy, Dallen J. & Hwang, Jinsoo, 2011. "Understanding Japanese tourists’ shopping preferences using the Decision Tree Analysis method," Tourism Management, Elsevier, vol. 32(3), pages 544-554.
    22. Sanjiv Sabherwal & Salil K. Sarkar & Ying Zhang, 2011. "Do Internet Stock Message Boards Influence Trading? Evidence from Heavily Discussed Stocks with No Fundamental News," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 38(9-10), pages 1209-1237, November.
    23. Chan, Kalok & Hameed, Allaudeen & Kang, Wenjin, 2013. "Stock price synchronicity and liquidity," Journal of Financial Markets, Elsevier, vol. 16(3), pages 414-438.
    24. Bryan Fong, 2021. "Analysing the behavioural finance impact of 'fake news' phenomena on financial markets: a representative agent model and empirical validation," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    25. Salas, Jesus M., 2010. "Entrenchment, governance, and the stock price reaction to sudden executive deaths," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 656-666, March.
    26. Wen, Fenghua & Xu, Longhao & Ouyang, Guangda & Kou, Gang, 2019. "Retail investor attention and stock price crash risk: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 65(C).
    27. Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    28. Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
    29. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    30. Gong, Stephen X.H., 2007. "Bankruptcy protection and stock market behavior in the US airline industry," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 213-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Ramzan & Mohammad Razib Hossain & Kashif Raza Abbasi & Tomiwa Sunday Adebayo & Rafael Alvarado, 2024. "Unveiling time-varying asymmetries in the stock market returns through energy prices, green innovation, and market risk factors: wavelet-based evidence from China," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-36, June.
    2. Nobanee, Haitham & Ellili, Nejla Ould Daoud, 2023. "What do we know about meme stocks? A bibliometric and systematic review, current streams, developments, and directions for future research," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 589-602.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
    2. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    3. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    4. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    5. Theuri, Joseph & Olukuru, John, 2022. "The impact of Artficial Intelligence and how it is shaping banking," KBA Centre for Research on Financial Markets and Policy Working Paper Series 61, Kenya Bankers Association (KBA).
    6. José Américo Pereira Antunes, 2021. "To supervise or to self-supervise: a machine learning based comparison on credit supervision," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-21, December.
    7. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    8. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    9. Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
    10. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    11. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    12. Seyyide Doğan & Yasin Büyükkör & Murat Atan, 2022. "A comparative study of corporate credit ratings prediction with machine learning," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 25-47.
    13. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    14. Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
    15. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
    16. Irving Fisher Committee, 2019. "The use of big data analytics and artificial intelligence in central banking," IFC Bulletins, Bank for International Settlements, number 50.
    17. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    18. A. R. Provenzano & D. Trifir`o & A. Datteo & L. Giada & N. Jean & A. Riciputi & G. Le Pera & M. Spadaccino & L. Massaron & C. Nordio, 2020. "Machine Learning approach for Credit Scoring," Papers 2008.01687, arXiv.org.
    19. Yaseen Ghulam & Kamini Dhruva & Sana Naseem & Sophie Hill, 2018. "The Interaction of Borrower and Loan Characteristics in Predicting Risks of Subprime Automobile Loans," Risks, MDPI, vol. 6(3), pages 1-21, September.
    20. Roman P. Bulyga & Alexey A. Sitnov & Liudmila V. Kashirskaya & Irina V. Safonova, 2020. "Transparency of credit institutions," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 3158-3172, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00423-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.