IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.08045.html
   My bibliography  Save this paper

Comparative analysis of neural network architectures for short-term FOREX forecasting

Author

Listed:
  • Theodoros Zafeiriou
  • Dimitris Kalles

Abstract

The present document delineates the analysis, design, implementation, and benchmarking of various neural network architectures within a short-term frequency prediction system for the foreign exchange market (FOREX). Our aim is to simulate the judgment of the human expert (technical analyst) using a system that responds promptly to changes in market conditions, thus enabling the optimization of short-term trading strategies. We designed and implemented a series of LSTM neural network architectures which are taken as input the exchange rate values and generate the short-term market trend forecasting signal and an ANN custom architecture based on technical analysis indicator simulators We performed a comparative analysis of the results and came to useful conclusions regarding the suitability of each architecture and the cost in terms of time and computational power to implement them. The ANN custom architecture produces better prediction quality with higher sensitivity using fewer resources and spending less time than LSTM architectures. The ANN custom architecture appears to be ideal for use in low-power computing systems and for use cases that need fast decisions with the least possible computational cost.

Suggested Citation

  • Theodoros Zafeiriou & Dimitris Kalles, 2024. "Comparative analysis of neural network architectures for short-term FOREX forecasting," Papers 2405.08045, arXiv.org.
  • Handle: RePEc:arx:papers:2405.08045
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.08045
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deniz Can Yıldırım & Ismail Hakkı Toroslu & Ugo Fiore, 2021. "Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-36, December.
    2. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
    3. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    4. Ruoxuan Xiong & Eric P. Nichols & Yuan Shen, 2015. "Deep Learning Stock Volatility with Google Domestic Trends," Papers 1512.04916, arXiv.org, revised Feb 2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    2. Zezheng Zhang & Matloob Khushi, 2020. "GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method for RoboTrading," Papers 2008.09471, arXiv.org.
    3. Thierry Warin & Aleksandar Stojkov, 2021. "Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature," JRFM, MDPI, vol. 14(7), pages 1-31, July.
    4. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    5. Manuel Nunes & Enrico Gerding & Frank McGroarty & Mahesan Niranjan, 2020. "Long short-term memory networks and laglasso for bond yield forecasting: Peeping inside the black box," Papers 2005.02217, arXiv.org.
    6. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    7. Kevin Cedric Guyard & Michel Deriaz, 2024. "Predicting Foreign Exchange EUR/USD direction using machine learning," Papers 2409.04471, arXiv.org, revised Oct 2024.
    8. David Liu & An Wei, 2022. "Regulated LSTM Artificial Neural Networks for Option Risks," FinTech, MDPI, vol. 1(2), pages 1-11, June.
    9. Haixiang Yao & Shenghao Xia & Hao Liu, 2024. "Return predictability via an long short‐term memory‐based cross‐section factor model: Evidence from Chinese stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1770-1794, September.
    10. Reitz, Stefan & Rülke, Jan & Stadtmann, Georg, 2012. "Nonlinear Expectations in Speculative Markets," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62045, Verein für Socialpolitik / German Economic Association.
    11. Reitz, Stefan & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "Nonlinear expectations in speculative markets – Evidence from the ECB survey of professional forecasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(9), pages 1349-1363.
    12. Vigfusson, Robert, 1997. "Switching between Chartists and Fundamentalists: A Markov Regime-Switching Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 291-305, October.
    13. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    14. Joshua Schwartzstein & Adi Sunderam, 2021. "Using Models to Persuade," American Economic Review, American Economic Association, vol. 111(1), pages 276-323, January.
    15. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    16. Guglielmo Maria Caporale & Alex Plastun, 2019. "Price overreactions in the cryptocurrency market," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(5), pages 1137-1155, August.
    17. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    18. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    19. Chi-Wei Su, 2012. "The relationship between exchange rate and macroeconomic variables in China," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 30(1), pages 33-56.
    20. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.08045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.