IDEAS home Printed from https://ideas.repec.org/a/gam/jfinte/v1y2022i2p14-190d830201.html
   My bibliography  Save this article

Regulated LSTM Artificial Neural Networks for Option Risks

Author

Listed:
  • David Liu

    (Department of Financial and Actuarial Mathematics, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

  • An Wei

    (Department of Financial and Actuarial Mathematics, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

Abstract

This research aims to study the pricing risks of options by using improved LSTM artificial neural network models and make direct comparisons with the Black–Scholes option pricing model based upon the option prices of 50 ETFs of the Shanghai Securities Exchange from 1 January 2018 to 31 December 2019. We study an LSTM model, a mathematical option pricing model (BS model), and an improved artificial neural network model—the regulated LSTM model. The method we adopted is first to price the options using the mathematical model—i.e., the BS model—and then to construct the LSTM neural network for training and predicting the option prices. We further form the regulated LSTM network with optimally selected key technical indicators using Python programming aiming at improving the network’s predicting ability. Risks of option pricing are measured by MSE, RMSE, MAE and MAPE, respectively, for all the models used. The results of this paper show that both the ordinary LSTM and the traditional BS option pricing model have lower predictive ability than the regulated LSTM model. The prediction ability of the regulated LSTM model with the optimal technical indicators is superior, and the approach adopted is effective.

Suggested Citation

  • David Liu & An Wei, 2022. "Regulated LSTM Artificial Neural Networks for Option Risks," FinTech, MDPI, vol. 1(2), pages 1-11, June.
  • Handle: RePEc:gam:jfinte:v:1:y:2022:i:2:p:14-190:d:830201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2674-1032/1/2/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2674-1032/1/2/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Deniz Can Yıldırım & Ismail Hakkı Toroslu & Ugo Fiore, 2021. "Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-36, December.
    3. Ko, Kuan-Cheng & Lin, Shinn-Juh & Su, Hsiang-Ju & Chang, Hsing-Hua, 2014. "Value investing and technical analysis in Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 14-36.
    4. David Liu, 2019. "Markov modulated jump-diffusions for currency options when regime switching risk is priced," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-26, December.
    5. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    6. Alessandro Ramponi, 2022. "Spread Option Pricing in Regime-Switching Jump Diffusion Models," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
    7. Yao, Jingtao & Li, Yili & Tan, Chew Lim, 2000. "Option price forecasting using neural networks," Omega, Elsevier, vol. 28(4), pages 455-466, August.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    2. Jeonggyu Huh, 2018. "Pricing Options with Exponential Levy Neural Network," Papers 1802.06520, arXiv.org, revised Sep 2018.
    3. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    4. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    5. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    6. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    7. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    8. Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
    9. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    10. Chang-Yi Li & Son-Nan Chen & Shih-Kuei Lin, 2016. "Pricing derivatives with modeling CO emission allowance using a regime-switching jump diffusion model: with regime-switching risk premium," The European Journal of Finance, Taylor & Francis Journals, vol. 22(10), pages 887-908, August.
    11. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
    12. Mi-Hsiu Chiang & Chang-Yi Li & Son-Nan Chen, 2016. "Pricing currency options under double exponential jump diffusion in a Markov-modulated HJM economy," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 459-482, April.
    13. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    14. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    16. Yan Liu & Xiong Zhang, 2023. "Option Pricing Using LSTM: A Perspective of Realized Skewness," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    17. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    18. repec:wyi:journl:002108 is not listed on IDEAS
    19. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    20. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    21. Xun Li & Ping Lin & Xue-Cheng Tai & Jinghui Zhou, 2015. "Pricing Two-asset Options under Exponential L\'evy Model Using a Finite Element Method," Papers 1511.04950, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jfinte:v:1:y:2022:i:2:p:14-190:d:830201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.