IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v49y2013icp1-6.html
   My bibliography  Save this article

Spiral patterns near Turing instability in a discrete reaction diffusion system

Author

Listed:
  • Li, Meifeng
  • Han, Bo
  • Xu, Li
  • Zhang, Guang

Abstract

In this paper, linear stability analysis is applied to an exponential discrete Lotka–Volterra system, which describes the competition between two identical species. Conditions for the Turing instability are obtained and the emergence of spiral patterns is demonstrated by means of numerical simulations in the vicinity of the bifurcation point. Moreover, the impact of crucial system parameters on the stability and coherence of spiral patterns is illustrated on several examples.

Suggested Citation

  • Li, Meifeng & Han, Bo & Xu, Li & Zhang, Guang, 2013. "Spiral patterns near Turing instability in a discrete reaction diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 1-6.
  • Handle: RePEc:eee:chsofr:v:49:y:2013:i:c:p:1-6
    DOI: 10.1016/j.chaos.2013.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913000209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perc, Matjaž, 2007. "Spatial coherence resonance in neuronal media with discrete local dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 64-69.
    2. Wang, Weiming & Zhang, Lei & Wang, Hailing & Li, Zhenqing, 2010. "Pattern formation of a predator–prey system with Ivlev-type functional response," Ecological Modelling, Elsevier, vol. 221(2), pages 131-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Flores, J.C., 2020. "Game theory approach to sterile release populations and replicator dynamics: Niche fragmentation and resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Matvey Kulakov & Efim Frisman, 2023. "Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    4. Xu, Li & Liu, Jiayi & Zhang, Guang, 2018. "Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 226-231.
    5. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    6. Han, Xiaoling & Lei, Ceyu, 2023. "Bifurcation and turing instability analysis for a space- and time-discrete predator–prey system with Smith growth function," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Ghosh, Joydev & Sahoo, Banshidhar & Poria, Swarup, 2017. "Prey-predator dynamics with prey refuge providing additional food to predator," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 110-119.
    8. Zhang, Yin & Wu, Fuqiang & Wang, Chunni & Ma, Jun, 2019. "Stability of target waves in excitable media under electromagnetic induction and radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 519-530.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Guoyong & Xu, Lin & Xu, Aiguo & Wang, Guangrui & Yang, Shiping, 2011. "Spiral waves in excitable media due to noise and periodic forcing," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 728-738.
    2. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    4. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.
    5. Fasani, Stefano & Rinaldi, Sergio, 2011. "Factors promoting or inhibiting Turing instability in spatially extended prey–predator systems," Ecological Modelling, Elsevier, vol. 222(18), pages 3449-3452.
    6. Song, Li-Peng & Zhang , Rong-Ping & Feng , Li-Ping & Shi, Qiong, 2017. "Pattern dynamics of a spatial epidemic model with time delay," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 390-399.
    7. Zhao, Qiuyue & Liu, Shutang & Tian, Dadong, 2018. "Dynamic behavior analysis of phytoplankton–zooplankton system with cell size and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 160-168.
    8. Batabyal, Saikat & Jana, Debaldev & Upadhyay, Ranjit Kumar, 2021. "Diffusion driven finite time blow-up and pattern formation in a mutualistic preys-sexually reproductive predator system: A comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Chen, Mengxin & Wu, Ranchao & Chen, Liping, 2020. "Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    10. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
    11. Ghorai, Santu & Poria, Swarup, 2016. "Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 57-67.
    12. Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
    13. Lu, Guangqing & Smidtaite, Rasa & Navickas, Zenonas & Ragulskis, Minvydas, 2018. "The Effect of Explosive Divergence in a Coupled Map Lattice of Matrices," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 308-313.
    14. Rana, Sourav & Bhattacharya, Sabyasachi & Samanta, Sudip, 2022. "Spatiotemporal dynamics of Leslie–Gower predator–prey model with Allee effect on both populations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 32-49.
    15. Tang, Xiaosong & Song, Yongli, 2015. "Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator–prey model with herd behavior," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 375-391.
    16. Ford, Neville J. & Lima, Pedro M. & Lumb, Patricia M., 2017. "Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh–Nagumo equation," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 448-460.
    17. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    18. Xie, Huijuan & Gong, Yubing, 2017. "Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 80-85.
    19. Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Ramya Seenivasan & Prosenjit Paul, 2024. "Turing patterns in exploited predator–prey systems with habitat loss," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(11), pages 1-15, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:49:y:2013:i:c:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.