IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i2p131-140.html
   My bibliography  Save this article

Pattern formation of a predator–prey system with Ivlev-type functional response

Author

Listed:
  • Wang, Weiming
  • Zhang, Lei
  • Wang, Hailing
  • Li, Zhenqing

Abstract

In this paper, we investigate the spatial pattern formation of a predator–prey system with prey-dependent functional response Ivlev-type and reaction-diffusion. The Hopf bifurcation of the model is discussed, and the sufficient conditions for the Turing instability with zero-flux boundary conditions are obtained. Based on this, we perform the spiral and the chaotic spiral patterns via numerical simulation, i.e., the evolution process of the system with the initial conditions which was small amplitude random perturbation around the steady state. For the sake of learning the pattern formation of the model further, we perform three categories of unsymmetric initial condition, and find that with these special initial conditions the system can emerge not only spiral pattern but also target pattern and so on, and the effect of these special conditions on the formation of spatial patterns is less and less with more and more iterations but the effect does not decay forever. This indicates that for prey-dependent type predator–prey system, pattern formations do depend on the initial conditions, while for predator-dependent type they do not.

Suggested Citation

  • Wang, Weiming & Zhang, Lei & Wang, Hailing & Li, Zhenqing, 2010. "Pattern formation of a predator–prey system with Ivlev-type functional response," Ecological Modelling, Elsevier, vol. 221(2), pages 131-140.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:2:p:131-140
    DOI: 10.1016/j.ecolmodel.2009.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009006310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Mengxin & Wu, Ranchao & Chen, Liping, 2020. "Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    2. Li, Meifeng & Han, Bo & Xu, Li & Zhang, Guang, 2013. "Spiral patterns near Turing instability in a discrete reaction diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 1-6.
    3. Rana, Sourav & Bhattacharya, Sabyasachi & Samanta, Sudip, 2022. "Spatiotemporal dynamics of Leslie–Gower predator–prey model with Allee effect on both populations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 32-49.
    4. Fasani, Stefano & Rinaldi, Sergio, 2011. "Factors promoting or inhibiting Turing instability in spatially extended prey–predator systems," Ecological Modelling, Elsevier, vol. 222(18), pages 3449-3452.
    5. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Song, Li-Peng & Zhang , Rong-Ping & Feng , Li-Ping & Shi, Qiong, 2017. "Pattern dynamics of a spatial epidemic model with time delay," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 390-399.
    7. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Tang, Xiaosong & Song, Yongli, 2015. "Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator–prey model with herd behavior," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 375-391.
    9. Ghorai, Santu & Poria, Swarup, 2016. "Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 57-67.
    10. Zhao, Qiuyue & Liu, Shutang & Tian, Dadong, 2018. "Dynamic behavior analysis of phytoplankton–zooplankton system with cell size and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 160-168.
    11. Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Batabyal, Saikat & Jana, Debaldev & Upadhyay, Ranjit Kumar, 2021. "Diffusion driven finite time blow-up and pattern formation in a mutualistic preys-sexually reproductive predator system: A comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    13. Ramya Seenivasan & Prosenjit Paul, 2024. "Turing patterns in exploited predator–prey systems with habitat loss," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:2:p:131-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.