IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v21y2019i4d10.1007_s10018-019-00239-5.html
   My bibliography  Save this article

Neighborhood influences on the diffusion of residential photovoltaic systems in Kyoto City, Japan

Author

Listed:
  • Takanobu Kosugi

    (Ritsumeikan University)

  • Yoshiyuki Shimoda

    (Osaka University)

  • Takayuki Tashiro

    (Environment Policy Bureau, City of Kyoto)

Abstract

This study investigates the factors influencing the diffusion of residential photovoltaic systems. Factors examined are related to social attributes, such as population structure and living environment within neighborhoods and those close by, together with a neighbor effect revealed as a positive spatial dependency of the diffusion. To examine these factors simultaneously, the study applies a spatial econometric analysis, taking advantage of the availability of cumulative data on installed residential photovoltaic systems and census-based social attributes in about 4000 census blocks in Kyoto City, which include 1.47 million people. Results include: (1) an observed neighbor effect, especially between census blocks within a radius of 1000 m; (2) evidence that diffusion is positively influenced in a census block by lower population density and higher number of household members, as well as by lower ratios of detached houses and lower population densities in nearby census blocks; and (3) indication that diffusion is positively influenced by a higher proportion of young people through various mechanisms. To further facilitate the diffusion, implementing non-economic measures designed in light of the observed neighborhood influences is recommended, in addition to conventional economic support measures.

Suggested Citation

  • Takanobu Kosugi & Yoshiyuki Shimoda & Takayuki Tashiro, 2019. "Neighborhood influences on the diffusion of residential photovoltaic systems in Kyoto City, Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 477-505, October.
  • Handle: RePEc:spr:envpol:v:21:y:2019:i:4:d:10.1007_s10018-019-00239-5
    DOI: 10.1007/s10018-019-00239-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10018-019-00239-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10018-019-00239-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rode, Johannes & Müller, Sven, 2016. "Spatio-Temporal Variation in Peer Effects - The Case of Rooftop Photovoltaic Systems in Germany," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 84765, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    3. Laura-Lucia Richter, 2013. "Social Effects in the Diffusion of solar Photovoltaic Technology in the UK," Cambridge Working Papers in Economics 1357, Faculty of Economics, University of Cambridge.
    4. Zhang, Yu & Song, Junghyun & Hamori, Shigeyuki, 2011. "Impact of subsidy policies on diffusion of photovoltaic power generation," Energy Policy, Elsevier, vol. 39(4), pages 1958-1964, April.
    5. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    6. J. Richard Snape, 2016. "Spatial and Temporal Characteristics of PV Adoption in the UK and Their Implications for the Smart Grid," Energies, MDPI, vol. 9(3), pages 1-18, March.
    7. Laura-Lucia Richter, 2013. "Social Effects in the Diffusion of Solar Photovoltaic Technology in the UK," Working Papers EPRG 1332, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    9. Drury, Easan & Miller, Mackay & Macal, Charles M. & Graziano, Diane J. & Heimiller, Donna & Ozik, Jonathan & Perry IV, Thomas D., 2012. "The transformation of southern California's residential photovoltaics market through third-party ownership," Energy Policy, Elsevier, vol. 42(C), pages 681-690.
    10. Noll, Daniel & Dawes, Colleen & Rai, Varun, 2014. "Solar Community Organizations and active peer effects in the adoption of residential PV," Energy Policy, Elsevier, vol. 67(C), pages 330-343.
    11. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
    12. Marcello Graziano & Kenneth Gillingham, 2015. "Spatial patterns of solar photovoltaic system adoption: The influence of neighbors and the built environment," Journal of Economic Geography, Oxford University Press, vol. 15(4), pages 815-839.
    13. Sven Müller & Johannes Rode, 2013. "The adoption of photovoltaic systems in Wiesbaden, Germany," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(5), pages 519-535, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irwin, Nicholas B., 2021. "Sunny days: Spatial spillovers in photovoltaic system adoptions," Energy Policy, Elsevier, vol. 151(C).
    2. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    3. Jianhua Zhang & Xiaolong Liu & Dimitris Ballas, 2023. "Spatial and relational peer effects on environmental behavioral imitation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 575-599, October.
    4. Emily Schulte & Fabian Scheller & Wilmer Pasut & Thomas Bruckner, 2021. "Product traits, decision-makers, and household low-carbon technology adoptions: moving beyond single empirical studies," Papers 2112.11867, arXiv.org.
    5. Oleg Kucher & Donald Lacombe & Sean T. Davidson, 2021. "The Residential Solar PV in the Mid-Atlantic: A Spatial Panel Approach," International Regional Science Review, , vol. 44(2), pages 262-288, March.
    6. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    7. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.
    8. Stewart, Fraser, 2021. "All for sun, sun for all: Can community energy help to overcome socioeconomic inequalities in low-carbon technology subsidies?," Energy Policy, Elsevier, vol. 157(C).
    9. Tao, Linwei & Hayashi, Kiichiro & Shiraki, Hiroto & Huang, Xiaoxun & Dem, Phub, 2024. "Exploration of determinants underlying regional disparity in rooftop photovoltaic adoption: A case study in Nagoya, Japan," Applied Energy, Elsevier, vol. 367(C).
    10. Lekavičius, V. & Bobinaitė, V. & Galinis, A. & Pažėraitė, A., 2020. "Distributional impacts of investment subsidies for residential energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Pronti, A. & Zoboli, R., 2024. "Something new under the sun. A spatial econometric analysis of the adoption of photovoltaic systems in Italy," Energy Economics, Elsevier, vol. 134(C).
    12. Stewart, Fraser, 2022. "Friends with benefits: How income and peer diffusion combine to create an inequality “trap” in the uptake of low-carbon technologies," Energy Policy, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M. & Truckell, Ian & Hart, Phil, 2021. "Energy transition at local level: Analyzing the role of peer effects and socio-economic factors on UK solar photovoltaic deployment," Energy Policy, Elsevier, vol. 148(PB).
    2. Moon-Hyun Kim & Tae-Hyoung Tommy Gim, 2021. "Spatial Characteristics of the Diffusion of Residential Solar Photovoltaics in Urban Areas: A Case of Seoul, South Korea," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
    3. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    5. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    6. Rode, Johannes & Müller, Sven, 2016. "Spatio-Temporal Variation in Peer Effects - The Case of Rooftop Photovoltaic Systems in Germany," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 84765, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Maren Springsklee & Fabian Scheller, 2022. "Exploring non-residential technology adoption: an empirical analysis of factors associated with the adoption of photovoltaic systems by municipal authorities in Germany," Papers 2212.05281, arXiv.org.
    8. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    9. Lan, Haifeng & Gou, Zhonghua & Lu, Yi, 2021. "Machine learning approach to understand regional disparity of residential solar adoption in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    10. Jan Paul Baginski & Christoph Weber, "undated". "Coherent estimations for residential photovoltaic uptake in Germany including spatial spillover effects," EWL Working Papers 1902, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    11. Pronti, A. & Zoboli, R., 2024. "Something new under the sun. A spatial econometric analysis of the adoption of photovoltaic systems in Italy," Energy Economics, Elsevier, vol. 134(C).
    12. Jianhua Zhang & Xiaolong Liu & Dimitris Ballas, 2023. "Spatial and relational peer effects on environmental behavioral imitation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 575-599, October.
    13. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. De Groote, Olivier & Pepermans, Guido & Verboven, Frank, 2016. "Heterogeneity in the adoption of photovoltaic systems in Flanders," Energy Economics, Elsevier, vol. 59(C), pages 45-57.
    15. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
    16. Noemi Munkacsi & Krushna Mahapatra, 2019. "Communication and Household Adoption of Heating Products in Hungary," Energies, MDPI, vol. 12(2), pages 1-22, January.
    17. Stewart, Fraser, 2022. "Friends with benefits: How income and peer diffusion combine to create an inequality “trap” in the uptake of low-carbon technologies," Energy Policy, Elsevier, vol. 163(C).
    18. Irwin, Nicholas B., 2021. "Sunny days: Spatial spillovers in photovoltaic system adoptions," Energy Policy, Elsevier, vol. 151(C).
    19. Min, Yohan & Ko, Inhwan, 2023. "Causal effects of place, people, and process on rooftop solar adoption through Bayesian inference," Energy, Elsevier, vol. 285(C).
    20. Alderete Peralta, Ali & Balta-Ozkan, Nazmiye & Longhurst, Philip, 2022. "Spatio-temporal modelling of solar photovoltaic adoption: An integrated neural networks and agent-based modelling approach," Applied Energy, Elsevier, vol. 305(C).

    More about this item

    Keywords

    Peer effects; Spatial autoregression; Solar photovoltaic power generation; Demographic structure; Living environment;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • R23 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Regional Migration; Regional Labor Markets; Population

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:21:y:2019:i:4:d:10.1007_s10018-019-00239-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.