IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v151y2021ics0301421521000616.html
   My bibliography  Save this article

Sunny days: Spatial spillovers in photovoltaic system adoptions

Author

Listed:
  • Irwin, Nicholas B.

Abstract

Spatial spillovers – peer effects from neighboring actions on one's own decisions – play an important role in the diffusion of technologies, particularly the adoption of residential photovoltaic (PV) systems and have important implications for renewable energy policies meant to encourage small-scale solar energy generation. Existing research notes spillovers manifest at large spatial scales but evidence at smaller scales is currently absent. In this work, we examine if spatial spillovers in residential PV system adoptions exist at small scales – specifically within one's nearest set of neighbors – using spatially explicit data on residential PV installations from Baltimore, MD. We find strong evidence for the existence of spatial spillovers, with a neighboring installation increasing PV system adoption likelihood by 16.5–17.1 percent. The results indicate the presence of a potential multiplier effect that can be targeted by policymakers interested in encouraging solar energy development to meet renewable energy goals.

Suggested Citation

  • Irwin, Nicholas B., 2021. "Sunny days: Spatial spillovers in photovoltaic system adoptions," Energy Policy, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:enepol:v:151:y:2021:i:c:s0301421521000616
    DOI: 10.1016/j.enpol.2021.112192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521000616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A. & Durlauf, Steven N., 2001. "Interactions-based models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 54, pages 3297-3380, Elsevier.
    2. Dastrup, Samuel R. & Graff Zivin, Joshua & Costa, Dora L. & Kahn, Matthew E., 2012. "Understanding the Solar Home price premium: Electricity generation and “Green” social status," European Economic Review, Elsevier, vol. 56(5), pages 961-973.
    3. Laura-Lucia Richter, 2013. "Social Effects in the Diffusion of solar Photovoltaic Technology in the UK," Cambridge Working Papers in Economics 1357, Faculty of Economics, University of Cambridge.
    4. Andrea Baranzini, Stefano Carattini, Martin Peclat, 2017. "What drives social contagion in the adoption of solar photovoltaic technology," GRI Working Papers 270, Grantham Research Institute on Climate Change and the Environment.
    5. Ioannides, Yannis M., 2002. "Residential neighborhood effects," Regional Science and Urban Economics, Elsevier, vol. 32(2), pages 145-165, March.
    6. Takanobu Kosugi & Yoshiyuki Shimoda & Takayuki Tashiro, 2019. "Neighborhood influences on the diffusion of residential photovoltaic systems in Kyoto City, Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 477-505, October.
    7. Laura-Lucia Richter, 2013. "Social Effects in the Diffusion of Solar Photovoltaic Technology in the UK," Working Papers EPRG 1332, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Curtius, Hans Christoph & Hille, Stefanie Lena & Berger, Christian & Hahnel, Ulf Joachim Jonas & Wüstenhagen, Rolf, 2018. "Shotgun or snowball approach? Accelerating the diffusion of rooftop solar photovoltaics through peer effects and social norms," Energy Policy, Elsevier, vol. 118(C), pages 596-602.
    9. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    10. Rode, Johannes & Weber, Alexander, 2016. "Does localized imitation drive technology adoption? A case study on rooftop photovoltaic systems in Germany," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 38-48.
    11. Charles Towe & Chad Lawley, 2013. "The Contagion Effect of Neighboring Foreclosures," American Economic Journal: Economic Policy, American Economic Association, vol. 5(2), pages 313-335, May.
    12. Charles F. Manski, 2000. "Economic Analysis of Social Interactions," Journal of Economic Perspectives, American Economic Association, vol. 14(3), pages 115-136, Summer.
    13. Sirakaya, Sibel, 2006. "Recidivism and Social Interactions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 863-877, September.
    14. Nicholas B. Irwin, 2019. "Keeping up appearances: Spatial spillovers and housing renovations," Papers in Regional Science, Wiley Blackwell, vol. 98(5), pages 2115-2133, October.
    15. Noll, Daniel & Dawes, Colleen & Rai, Varun, 2014. "Solar Community Organizations and active peer effects in the adoption of residential PV," Energy Policy, Elsevier, vol. 67(C), pages 330-343.
    16. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    17. Ma, Ben & Yu, Yihua & Urban, Frauke, 2018. "Green transition of energy systems in rural China: National survey evidence of households’ discrete choices on water heaters," Energy Policy, Elsevier, vol. 113(C), pages 559-570.
    18. Marcello Graziano & Kenneth Gillingham, 2015. "Spatial patterns of solar photovoltaic system adoption: The influence of neighbors and the built environment," Journal of Economic Geography, Oxford University Press, vol. 15(4), pages 815-839.
    19. Rode, Johannes & Weber, Alexander, 2016. "Does localized imitation drive technology adoption? A case study on rooftop photovoltaic systems in Germany," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 38-48.
    20. Hsu, Jenneille Hwai-Yuan, 2018. "Predictors for adoption of local solar approval processes and impact on residential solar installations in California cities," Energy Policy, Elsevier, vol. 117(C), pages 463-472.
    21. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Best, Rohan & Burke, Paul J., 2023. "Small-scale solar panel adoption by the non-residential sector: The effects of national and targeted policies in Australia," Economic Modelling, Elsevier, vol. 120(C).
    2. Jianhua Zhang & Xiaolong Liu & Dimitris Ballas, 2023. "Spatial and relational peer effects on environmental behavioral imitation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 575-599, October.
    3. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Brelsford & Caterina Bacco, 2018. "Are ‘Water Smart Landscapes’ Contagious? An Epidemic Approach on Networks to Study Peer Effects," Networks and Spatial Economics, Springer, vol. 18(3), pages 577-613, September.
    2. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    3. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    4. Rode, Johannes & Müller, Sven, 2016. "Spatio-Temporal Variation in Peer Effects - The Case of Rooftop Photovoltaic Systems in Germany," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 84765, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Christa Brelsford & Caterina De Bacco, 2018. "Are `Water Smart Landscapes' Contagious? An epidemic approach on networks to study peer effects," Papers 1801.10516, arXiv.org.
    6. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M. & Truckell, Ian & Hart, Phil, 2021. "Energy transition at local level: Analyzing the role of peer effects and socio-economic factors on UK solar photovoltaic deployment," Energy Policy, Elsevier, vol. 148(PB).
    7. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    8. Moon-Hyun Kim & Tae-Hyoung Tommy Gim, 2021. "Spatial Characteristics of the Diffusion of Residential Solar Photovoltaics in Urban Areas: A Case of Seoul, South Korea," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
    9. Jianhua Zhang & Xiaolong Liu & Dimitris Ballas, 2023. "Spatial and relational peer effects on environmental behavioral imitation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 575-599, October.
    10. Min, Yohan & Ko, Inhwan, 2023. "Causal effects of place, people, and process on rooftop solar adoption through Bayesian inference," Energy, Elsevier, vol. 285(C).
    11. Esplin, Ryan & Nelson, Tim, 2022. "Redirecting solar feed in tariffs to residential battery storage: Would it be worth it?," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 373-389.
    12. Chakraborty, Debapriya & Bunch, David S. & Brownstone, David & Xu, Bingzheng & Tal, Gil, 2022. "Plug-in electric vehicle diffusion in California: Role of exposure to new technology at home and work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 133-151.
    13. Lan, Haifeng & Gou, Zhonghua & Lu, Yi, 2021. "Machine learning approach to understand regional disparity of residential solar adoption in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    14. Gabriel S. Sampson & Edward D. Perry, 2019. "Peer effects in the diffusion of water‐saving agricultural technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 50(6), pages 693-706, November.
    15. Jan Paul Baginski & Christoph Weber, "undated". "Coherent estimations for residential photovoltaic uptake in Germany including spatial spillover effects," EWL Working Papers 1902, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    16. Paul Simshauser & Tim Nelson & Joel Gilmore, 2022. "The sunshine state: implications from mass rooftop solar PV take-up rates in Queensland," Working Papers EPRG2219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Fabian Scheller & Isabel Doser & Emily Schulte & Simon Johanning & Russell McKenna & Thomas Bruckner, 2021. "Stakeholder dynamics in residential solar energy adoption: findings from focus group discussions in Germany," Papers 2104.14240, arXiv.org.
    18. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Stefano Carattini & Simon Levin & Alessandro Tavoni, 2019. "Cooperation in the Climate Commons," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 13(2), pages 227-247.
    20. Petrovich, Beatrice & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2019. "Beauty and the budget: A segmentation of residential solar adopters," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.

    More about this item

    Keywords

    Solar photovoltaic (PV); Spatial spillovers; Renewable energy; Peer effects;
    All these keywords.

    JEL classification:

    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other
    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General
    • D1 - Microeconomics - - Household Behavior
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:151:y:2021:i:c:s0301421521000616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.