IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.11867.html
   My bibliography  Save this paper

Product traits, decision-makers, and household low-carbon technology adoptions: moving beyond single empirical studies

Author

Listed:
  • Emily Schulte
  • Fabian Scheller
  • Wilmer Pasut
  • Thomas Bruckner

Abstract

Although single empirical studies provide important insights into who adopts a specific LCT for what reason, fundamental questions concerning the relations between decision subject (= who decides), decision object (= what is decided upon) and context (= when and where it is decided) remain unanswered. In this paper, this research gap is addressed by deriving a decision framework for residential decision-making, suggesting that traits of decision subject and object are determinants of financial, environmental, symbolic, normative, effort and technical considerations preceding adoption. Thereafter, the decision framework is initially verified by employing literature on the adoption of photovoltaic systems, energy-efficient appliances and green tariffs. Of the six proposed relations, two could be confirmed (financial and environmental), one could be rejected (effort), and three could neither be confirmed nor rejected due to lacking evidence. Future research on LCT adoption could use the decision framework as a guidepost to establish a more coordinated and integrated approach, ultimately allowing to address fundamental questions.

Suggested Citation

  • Emily Schulte & Fabian Scheller & Wilmer Pasut & Thomas Bruckner, 2021. "Product traits, decision-makers, and household low-carbon technology adoptions: moving beyond single empirical studies," Papers 2112.11867, arXiv.org.
  • Handle: RePEc:arx:papers:2112.11867
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.11867
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dastrup, Samuel R. & Graff Zivin, Joshua & Costa, Dora L. & Kahn, Matthew E., 2012. "Understanding the Solar Home price premium: Electricity generation and “Green” social status," European Economic Review, Elsevier, vol. 56(5), pages 961-973.
    2. Ivan Diaz‐Rainey & John K. Ashton, 2011. "Profiling potential green electricity tariff adopters: green consumerism as an environmental policy tool?," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 456-470, November.
    3. Jacksohn, Anke & Grösche, Peter & Rehdanz, Katrin & Schröder, Carsten, 2019. "Drivers of renewable technology adoption in the household sector," Energy Economics, Elsevier, vol. 81(C), pages 216-226.
    4. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    5. Ritsuko Ozaki, 2011. "Adopting sustainable innovation: what makes consumers sign up to green electricity?," Business Strategy and the Environment, Wiley Blackwell, vol. 20(1), pages 1-17, January.
    6. Ek, Kristina & Söderholm, Patrik, 2008. "Norms and economic motivation in the Swedish green electricity market," Ecological Economics, Elsevier, vol. 68(1-2), pages 169-182, December.
    7. Takanobu Kosugi & Yoshiyuki Shimoda & Takayuki Tashiro, 2019. "Neighborhood influences on the diffusion of residential photovoltaic systems in Kyoto City, Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 477-505, October.
    8. MacPherson, Ronnie & Lange, Ian, 2013. "Determinants of green electricity tariff uptake in the UK," Energy Policy, Elsevier, vol. 62(C), pages 920-933.
    9. Zander, Kerstin K., 2020. "Unrealised opportunities for residential solar panels in Australia," Energy Policy, Elsevier, vol. 142(C).
    10. Ziegler, Andreas, 2020. "Heterogeneous preferences and the individual change to alternative electricity contracts," Energy Economics, Elsevier, vol. 91(C).
    11. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    12. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    13. Petrovich, Beatrice & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2019. "Beauty and the budget: A segmentation of residential solar adopters," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    14. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    15. Curtis, John & McCoy, Daire & Aravena, Claudia, 2018. "Heating system upgrades: The role of knowledge, socio-demographics, building attributes and energy infrastructure," Energy Policy, Elsevier, vol. 120(C), pages 183-196.
    16. Gaspar, Rui & Antunes, Dalila, 2011. "Energy efficiency and appliance purchases in Europe: Consumer profiles and choice determinants," Energy Policy, Elsevier, vol. 39(11), pages 7335-7346.
    17. Wijaya, Muhammad Ery & Tezuka, Tetsuo, 2013. "Measures for improving the adoption of higher efficiency appliances in Indonesian households: An analysis of lifetime use and decision-making in the purchase of electrical appliances," Applied Energy, Elsevier, vol. 112(C), pages 981-987.
    18. Johan Jansson, 2011. "Consumer eco‐innovation adoption: assessing attitudinal factors and perceived product characteristics," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 192-210, March.
    19. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    20. Erdal Aydin & Nils Kok & Dirk Brounen, 2017. "Energy efficiency and household behavior: the rebound effect in the residential sector," RAND Journal of Economics, RAND Corporation, vol. 48(3), pages 749-782, August.
    21. Kimberly S. Wolske & Kenneth T. Gillingham & P. Wesley Schultz, 2020. "Peer influence on household energy behaviours," Nature Energy, Nature, vol. 5(3), pages 202-212, March.
    22. Rohan Best & Paul J. Burke & Shuhei Nishitateno, 2019. "Understanding the determinants of rooftop solar installation: evidence from household surveys in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 922-939, October.
    23. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    24. Fabian Scheller & Soren Graupner & James Edwards & Jann Weinand & Thomas Bruckner, 2021. "Active peer effects in residential photovoltaic adoption: evidence on impact drivers among potential and current adopters in Germany," Papers 2105.00796, arXiv.org.
    25. Bondio, Steven & Shahnazari, Mahdi & McHugh, Adam, 2018. "The technology of the middle class: Understanding the fulfilment of adoption intentions in Queensland's rapid uptake residential solar photovoltaics market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 642-651.
    26. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    27. Danielis, Romeo & Giansoldati, Marco & Rotaris, Lucia, 2018. "A probabilistic total cost of ownership model to evaluate the current and future prospects of electric cars uptake in Italy," Energy Policy, Elsevier, vol. 119(C), pages 268-281.
    28. Anna Kowalska-Pyzalska, 2018. "An Empirical Analysis of Green Electricity Adoption Among Residential Consumers in Poland," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agarwal, Ankit & Canfield, Casey & Fikru, Mahelet G., 2024. "Role of greener default options on consumer preferences for renewable energy procurement," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    2. Best, Rohan & Chareunsy, Andrea, 2022. "The impact of income on household solar panel uptake: Exploring diverse results using Australian data," Energy Economics, Elsevier, vol. 112(C).
    3. Fabian Scheller & Isabel Doser & Emily Schulte & Simon Johanning & Russell McKenna & Thomas Bruckner, 2021. "Stakeholder dynamics in residential solar energy adoption: findings from focus group discussions in Germany," Papers 2104.14240, arXiv.org.
    4. Anna Kowalska-Pyzalska, 2019. "Do Consumers Want to Pay for Green Electricity? A Case Study from Poland," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    5. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    6. Fabian Scheller & Karyn Morrissey & Karsten Neuhoff & Dogan Keles, 2023. "Green or greedy: the relationship between perceived benefits and homeowners' intention to adopt residential low-carbon technologies," Papers 2308.10104, arXiv.org.
    7. Fabian Scheller & Soren Graupner & James Edwards & Jann Weinand & Thomas Bruckner, 2021. "Active peer effects in residential photovoltaic adoption: evidence on impact drivers among potential and current adopters in Germany," Papers 2105.00796, arXiv.org.
    8. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    9. Best, Rohan & Trück, Stefan, 2020. "Capital and policy impacts on Australian small-scale solar installations," Energy Policy, Elsevier, vol. 136(C).
    10. Bashiri, Ali & Alizadeh, Sasan H., 2018. "The analysis of demographics, environmental and knowledge factors affecting prospective residential PV system adoption: A study in Tehran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3131-3139.
    11. Zhang, Yanquan & Chang, Ruidong & Zuo, Jian & Shabunko, Veronika & Zheng, Xian, 2023. "Regional disparity of residential solar panel diffusion in Australia: The roles of socio-economic factors," Renewable Energy, Elsevier, vol. 206(C), pages 808-819.
    12. Best, Rohan & Marrone, Mauricio & Linnenluecke, Martina, 2023. "Meta-analysis of the role of equity dimensions in household solar panel adoption," Ecological Economics, Elsevier, vol. 206(C).
    13. Hansen, Anders Rhiger & Jacobsen, Mette Hove & Gram-Hanssen, Kirsten, 2022. "Characterizing the Danish energy prosumer: Who buys solar PV systems and why do they buy them?," Ecological Economics, Elsevier, vol. 193(C).
    14. Brown, Marilyn A. & Kale, Snehal & Cha, Min-Kyeong & Chapman, Oliver, 2023. "Exploring the willingness of consumers to electrify their homes," Applied Energy, Elsevier, vol. 338(C).
    15. Zhengxia He & Yanqing Zhou & Jianming Wang & Cunfang Li & Meiling Wang & Wenbo Li, 2021. "The impact of motivation, intention, and contextual factors on green purchasing behavior: New energy vehicles as an example," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1249-1269, February.
    16. Qin, Yong & Xu, Zeshui & Wang, Xinxin & Škare, Marinko, 2022. "Green energy adoption and its determinants: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Andrea Mezger & Pablo Cabanelas & Mª. Jesús López‐Miguens & Francesca Cabiddu & Klaus Rüdiger, 2020. "Sustainable development and consumption: The role of trust for switching towards green energy," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3598-3610, December.
    18. Lekavičius, V. & Bobinaitė, V. & Galinis, A. & Pažėraitė, A., 2020. "Distributional impacts of investment subsidies for residential energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    19. Adnan, Nadia & Nordin, Shahrina Md & Rahman, Imran, 2017. "Adoption of PHEV/EV in Malaysia: A critical review on predicting consumer behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 849-862.
    20. Will, Christian & Lehmann, Nico & Baumgartner, Nora & Feurer, Sven & Jochem, Patrick & Fichtner, Wolf, 2022. "Consumer understanding and evaluation of carbon-neutral electric vehicle charging services," Applied Energy, Elsevier, vol. 313(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.11867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.