IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v133y2020ics1364032120304330.html
   My bibliography  Save this article

Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics

Author

Listed:
  • Palm, A.

Abstract

To facilitate and forecast the diffusion of sustainable innovations, such as solar photovoltaics (PV), it is important to understand what motivates people to adopt them. Early adopters are known to be partly driven by other motives than late adopters, and adoption motives may thus change over time as new user segments gain interest in the technology. This paper investigates differences in adoption motives between the earliest and somewhat later adopters of residential PV systems. First, a systematic literature review is conducted, in which the findings of previous studies are mapped against the market maturity of their empirical contexts. The review reveals that the earliest PV adopters are driven mainly by environmental concern and technophilia, while later adopters are driven predominantly by economic gains. Second, an empirical investigation of Swedish adopters over a nine-year period is conducted, using Green Party voting as a proxy for environmental concern. It is found that the relationship between Green Party voting and PV adoption weakens over time, again suggesting that the earliest adopters are more driven by non-financial motives such as environmental concern than later adopters. The results can inform diffusion forecasting as well as marketing and information campaigning intended to induce PV adoptions.

Suggested Citation

  • Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120304330
    DOI: 10.1016/j.rser.2020.110142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matto Mildenberger & Peter D. Howe & Chris Miljanich, 2019. "Households with solar installations are ideologically diverse and more politically active than their neighbours," Nature Energy, Nature, vol. 4(12), pages 1033-1039, December.
    2. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    3. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    4. Karjalainen, Sami & Ahvenniemi, Hannele, 2019. "Pleasure is the profit - The adoption of solar PV systems by households in Finland," Renewable Energy, Elsevier, vol. 133(C), pages 44-52.
    5. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    6. Yamamoto, Yoshihiro, 2015. "Opinion leadership and willingness to pay for residential photovoltaic systems," Energy Policy, Elsevier, vol. 83(C), pages 185-192.
    7. Jonathan E. Hughes & Molly Podolefsky, 2015. "Getting Green with Solar Subsidies: Evidence from the California Solar Initiative," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 235-275.
    8. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    9. Drury, Easan & Miller, Mackay & Macal, Charles M. & Graziano, Diane J. & Heimiller, Donna & Ozik, Jonathan & Perry IV, Thomas D., 2012. "The transformation of southern California's residential photovoltaics market through third-party ownership," Energy Policy, Elsevier, vol. 42(C), pages 681-690.
    10. Brudermann, Thomas & Reinsberger, Kathrin & Orthofer, Anita & Kislinger, Martin & Posch, Alfred, 2013. "Photovoltaics in agriculture: A case study on decision making of farmers," Energy Policy, Elsevier, vol. 61(C), pages 96-103.
    11. Ford, Rebecca & Walton, Sara & Stephenson, Janet & Rees, David & Scott, Michelle & King, Geoff & Williams, John & Wooliscroft, Ben, 2017. "Emerging energy transitions: PV uptake beyond subsidies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 138-150.
    12. Vasseur, Véronique & Kemp, René, 2015. "The adoption of PV in the Netherlands: A statistical analysis of adoption factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 483-494.
    13. Sven Müller & Johannes Rode, 2013. "The adoption of photovoltaic systems in Wiesbaden, Germany," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(5), pages 519-535, July.
    14. Bergek, Anna & Mignon, Ingrid, 2017. "Motives to adopt renewable electricity technologies: Evidence from Sweden," Energy Policy, Elsevier, vol. 106(C), pages 547-559.
    15. Tran, Martino & Banister, David & Bishop, Justin D.K. & McCulloch, Malcolm D., 2013. "Simulating early adoption of alternative fuel vehicles for sustainability," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 865-875.
    16. Owen, A. & Mitchell, G. & Gouldson, A., 2014. "Unseen influence—The role of low carbon retrofit advisers and installers in the adoption and use of domestic energy technology," Energy Policy, Elsevier, vol. 73(C), pages 169-179.
    17. Palm, Jenny, 2018. "Household installation of solar panels – Motives and barriers in a 10-year perspective," Energy Policy, Elsevier, vol. 113(C), pages 1-8.
    18. Jacksohn, Anke & Grösche, Peter & Rehdanz, Katrin & Schröder, Carsten, 2019. "Drivers of renewable technology adoption in the household sector," Energy Economics, Elsevier, vol. 81(C), pages 216-226.
    19. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    20. Nygrén, Nina A. & Kontio, Panu & Lyytimäki, Jari & Varho, Vilja & Tapio, Petri, 2015. "Early adopters boosting the diffusion of sustainable small-scale energy solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 79-87.
    21. De Groote, Olivier & Pepermans, Guido & Verboven, Frank, 2016. "Heterogeneity in the adoption of photovoltaic systems in Flanders," Energy Economics, Elsevier, vol. 59(C), pages 45-57.
    22. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    23. Plötz, Patrick & Schneider, Uta & Globisch, Joachim & Dütschke, Elisabeth, 2014. "Who will buy electric vehicles? Identifying early adopters in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 96-109.
    24. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    25. Sommerfeld, Jeff & Buys, Laurie & Vine, Desley, 2017. "Residential consumers’ experiences in the adoption and use of solar PV," Energy Policy, Elsevier, vol. 105(C), pages 10-16.
    26. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    27. Coffman, Makena & Bernstein, Paul & Wee, Sherilyn, 2017. "Integrating electric vehicles and residential solar PV," Transport Policy, Elsevier, vol. 53(C), pages 30-38.
    28. Rai, Varun & Reeves, D. Cale & Margolis, Robert, 2016. "Overcoming barriers and uncertainties in the adoption of residential solar PV," Renewable Energy, Elsevier, vol. 89(C), pages 498-505.
    29. Läpple, Doris & Rensburg, Tom Van, 2011. "Adoption of organic farming: Are there differences between early and late adoption?," Ecological Economics, Elsevier, vol. 70(7), pages 1406-1414, May.
    30. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
    31. Ozgur Dedehayir & Roland J. Ortt & Carla Riverola & Francesc Miralles, 2017. "Innovators And Early Adopters In The Diffusion Of Innovations: A Literature Review," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-27, December.
    32. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    33. Korcaj, Liridon & Hahnel, Ulf J.J. & Spada, Hans, 2015. "Intentions to adopt photovoltaic systems depend on homeowners' expected personal gains and behavior of peers," Renewable Energy, Elsevier, vol. 75(C), pages 407-415.
    34. Ansolabehere, Stephen & Rodden, Jonathan & Snyder, James M., 2008. "The Strength of Issues: Using Multiple Measures to Gauge Preference Stability, Ideological Constraint, and Issue Voting," American Political Science Review, Cambridge University Press, vol. 102(2), pages 215-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    3. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    4. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    5. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. San-Martín, Enrique & Elizalde, Patxi, 2024. "Determinants of rooftop solar uptake: A comparative analysis of the residential and non-residential sectors in the Basque Country (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    7. Best, Rohan & Chareunsy, Andrea, 2022. "The impact of income on household solar panel uptake: Exploring diverse results using Australian data," Energy Economics, Elsevier, vol. 112(C).
    8. Zander, Kerstin K., 2020. "Unrealised opportunities for residential solar panels in Australia," Energy Policy, Elsevier, vol. 142(C).
    9. Yamashiro, Ririka & Mori, Akihisa, 2023. "Combined third-party ownership and aggregation business model for the adoption of rooftop solar PV–battery systems: Implications from the case of Miyakojima Island, Japan," Energy Policy, Elsevier, vol. 173(C).
    10. Fabian Scheller & Isabel Doser & Emily Schulte & Simon Johanning & Russell McKenna & Thomas Bruckner, 2021. "Stakeholder dynamics in residential solar energy adoption: findings from focus group discussions in Germany," Papers 2104.14240, arXiv.org.
    11. Axel Gautier & Julien Jacqmin, 2020. "PV adoption: the role of distribution tariffs under net metering," Journal of Regulatory Economics, Springer, vol. 57(1), pages 53-73, February.
    12. Li, Bo & Ding, Junqi & Wang, Jieqiong & Zhang, Biao & Zhang, Lingxian, 2021. "Key factors affecting the adoption willingness, behavior, and willingness-behavior consistency of farmers regarding photovoltaic agriculture in China," Energy Policy, Elsevier, vol. 149(C).
    13. Rydehell, Hanna & Lantz, Björn & Mignon, Ingrid & Lindahl, Johan, 2024. "The impact of solar PV subsidies on investment over time - the case of Sweden," Energy Economics, Elsevier, vol. 133(C).
    14. Hackbarth, André & Löbbe, Sabine, 2020. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Energy Policy, Elsevier, vol. 138(C).
    15. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.
    16. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    17. Nepal, Rabindra & Best, Rohan & Taylor, Madeline, 2023. "Strategies for reducing ethnic inequality in energy outcomes: A Nepalese example," Energy Economics, Elsevier, vol. 126(C).
    18. Alipour, M. & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "Exploring residential solar PV and battery energy storage adoption motivations and barriers in a mature PV market," Renewable Energy, Elsevier, vol. 190(C), pages 684-698.
    19. Hancevic, Pedro I. & Sandoval, Hector H., 2023. "Solar panel adoption among Mexican small and medium-sized commercial and service businesses," Energy Economics, Elsevier, vol. 126(C).
    20. Stewart, Fraser, 2022. "Friends with benefits: How income and peer diffusion combine to create an inequality “trap” in the uptake of low-carbon technologies," Energy Policy, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120304330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.