IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i7d10.1007_s10668-023-03302-0.html
   My bibliography  Save this article

Long-term evaluation of land use/land cover and hydrological drought patterns alteration consequences on river water quality

Author

Listed:
  • Farhang Rahmani

    (Marvdasht Branch Islamic Azad University)

  • Mohammad Hadi Fattahi

    (Marvdasht Branch Islamic Azad University)

Abstract

Land use/land cover (LULC) conversion and droughts impact river water quality. Since the river water quality is significant, it was attempted to investigate the effect of hydrological drought (HD) and LULC changes on the water quality parameters of the Helle river in Iran. All the time series (1969–2020) were analyzed using dynamic analysis applications. The results indicated that due to the alteration of LULC and HD patterns, water hardness and salinity were increased by 13.7% and 16.1%, respectively. Moreover, the water quality parameters concentration was intensified. However, the river water potential of hydrogen (pH) decreased by 0.4%. The number of random elements in the time series of the pH, bicarbonate, sulfate, magnesium, and sodium was increased noticeably, and their predictability and long-term memory were reduced. The total dissolved solids (TDS), electrical conductivity (EC), chloride, potassium, and calcium’s time series became more chaotic, and their predictability and long-term memory were improved. All the time series faced an increase in the number of noises. The alteration of HD patterns induced a reduction of correlation between HD and sulfate, sodium, magnesium, bicarbonate, pH, and TDS concentration and an augmentation of correlation between HD and chloride, calcium, potassium, and salinity concentration. The Helle river water quality deteriorated due to the alteration of HD patterns and LULC. Future studies can address the strategies to improve the water quality of the Helle river.

Suggested Citation

  • Farhang Rahmani & Mohammad Hadi Fattahi, 2024. "Long-term evaluation of land use/land cover and hydrological drought patterns alteration consequences on river water quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 19051-19068, July.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:7:d:10.1007_s10668-023-03302-0
    DOI: 10.1007/s10668-023-03302-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03302-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03302-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peña-Guerrero, Mayra Daniela & Nauditt, Alexandra & Muñoz-Robles, Carlos & Ribbe, Lars & Meza, Francisco, 2020. "Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 65(6), pages 1005-1021.
    2. Rafiei-Sardooi, Elham & Azareh, Ali & Joorabian Shooshtari, Sharif & Parteli, Eric J.R., 2022. "Long-term assessment of land-use and climate change on water scarcity in an arid basin in Iran," Ecological Modelling, Elsevier, vol. 467(C).
    3. Nosetto, M.D. & Acosta, A.M. & Jayawickreme, D.H. & Ballesteros, S.I. & Jackson, R.B. & Jobbágy, E.G., 2013. "Land-use and topography shape soil and groundwater salinity in central Argentina," Agricultural Water Management, Elsevier, vol. 129(C), pages 120-129.
    4. Subhasis Giri & Ashok Mishra & Zhen Zhang & Richard G. Lathrop & Ali O. Alnahit, 2021. "Meteorological and Hydrological Drought Analysis and Its Impact on Water Quality and Stream Integrity," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    5. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, detrending data, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 202-216.
    6. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babalwa Gqomfa & Thabang Maphanga & Takalani Terry Phungela & Benett Siyabonga Madonsela & Karabo Malakane & Stanley Lekata, 2023. "El Niño Southern Oscillation (ENSO) Implication towards Crocodile River Water Quality in South Africa," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    3. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    4. Peng Qi & Y. Jun Xu & Guodong Wang, 2020. "Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    5. Enes Gul & Efthymia Staiou & Mir Jafar Sadegh Safari & Babak Vaheddoost, 2023. "Enhancing Meteorological Drought Modeling Accuracy Using Hybrid Boost Regression Models: A Case Study from the Aegean Region, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    6. Mohammad Nazeri Tahroudi & Yousef Ramezani & Carlo De Michele & Rasoul Mirabbasi, 2020. "A New Method for Joint Frequency Analysis of Modified Precipitation Anomaly Percentage and Streamflow Drought Index Based on the Conditional Density of Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4217-4231, October.
    7. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    8. McCauley, Joseph L., 2008. "Time vs. ensemble averages for nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5518-5522.
    9. Beshavard, Mahdi & Adib, Arash & Ashrafi, Seyed Mohammad & Kisi, Ozgur, 2022. "Establishing effective warning storage to derive optimal reservoir operation policy based on the drought condition," Agricultural Water Management, Elsevier, vol. 274(C).
    10. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    11. Kulasinghe, Tharindu Nuwan & Dharmakeerthi, Randombage Saman, 2022. "Effects of land use type and tank components on soil properties and sustainability of tank cascade system in the Dry Zone of north central Sri Lanka," Agricultural Systems, Elsevier, vol. 201(C).
    12. Mohsin Butt & Ahmad Waqas & Rashed Mahmood, 2010. "The Combined Effect of Vegetation and Soil Erosion in the Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3701-3714, October.
    13. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    14. Ionuţ Minea & Marina Iosub & Daniel Boicu, 2022. "Multi-scale approach for different type of drought in temperate climatic conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1153-1177, January.
    15. Jiawei Zhou & Xiaohong Chen & Chuang Xu & Pan Wu, 2022. "Assessing Socioeconomic Drought Based on a Standardized Supply and Demand Water Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1937-1953, April.
    16. T. Thomas & R. K. Jaiswal & Ravi Galkate & P. C. Nayak & N. C. Ghosh, 2016. "Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1627-1652, April.
    17. Hasrul Hazman Hasan & Siti Fatin Mohd Razali & Nur Shazwani Muhammad & Asmadi Ahmad, 2022. "Modified Hydrological Drought Risk Assessment Based on Spatial and Temporal Approaches," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    18. Amit Kumar & Raghvender Pratap Singh & Swatantra Kumar Dubey & Kumar Gaurav, 2022. "Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    19. T. Sharma & U. Panu, 2014. "A Simplified Model for Predicting Drought Magnitudes: a Case of Streamflow Droughts in Canadian Prairies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1597-1611, April.
    20. Yeqing Zhai & Jie Liang & Zhenyu An & Xin Li & Ziqian Zhu & Wanting Wang & Yuru Yi & Suhang Yang, 2022. "Data Stream Approach for Exploration of Droughts and Floods Driving Forces in the Dongting Lake Wetland," Sustainability, MDPI, vol. 14(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:7:d:10.1007_s10668-023-03302-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.