IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i1p202-216.html
   My bibliography  Save this article

Martingales, detrending data, and the efficient market hypothesis

Author

Listed:
  • McCauley, Joseph L.
  • Bassler, Kevin E.
  • Gunaratne, Gemunu H.

Abstract

We discuss martingales, detrending data, and the efficient market hypothesis (EMH) for stochastic processes x(t) with arbitrary diffusion coefficients D(x,t). Beginning with x-independent drift coefficients R(t) we show that martingale stochastic processes generate uncorrelated, generally non-stationary increments. Generally, a test for a martingale is therefore a test for uncorrelated increments. A detrended process with an x-dependent drift coefficient is generally not a martingale, and so we extend our analysis to include the class of (x,t)-dependent drift coefficients of interest in finance. We explain why martingales look Markovian at the level of both simple averages and 2-point correlations. And while a Markovian market has no memory to exploit and presumably cannot be beaten systematically, it has never been shown that martingale memory cannot be exploited in 3-point or higher correlations to beat the market. We generalize our Markov scaling solutions presented earlier, and also generalize the martingale formulation of the EMH to include (x,t)-dependent drift in log returns. We also use the analysis of this paper to correct a misstatement of the ‘fair game’ condition in terms of serial correlations in Fama's paper on the EMH. We end with a discussion of Levy's characterization of Brownian motion and prove that an arbitrary martingale is topologically inequivalent to a Wiener process.

Suggested Citation

  • McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, detrending data, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 202-216.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:1:p:202-216
    DOI: 10.1016/j.physa.2007.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107008783
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCauley, J.L. & Gunaratne, G.H. & Bassler, K.E., 2007. "Martingale option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 351-356.
    2. J. L. McCauley & G. H. Gunaratne & K. E. Bassler, 2006. "Martingale Option Pricing," Papers physics/0606011, arXiv.org, revised Feb 2007.
    3. Skjeltorp, Johannes A, 2000. "Scaling in the Norwegian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 486-528.
    4. McCauley, Joseph L. & Gunaratne, Gemunu H. & Bassler, Kevin E., 2007. "Hurst exponents, Markov processes, and fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 1-9.
    5. Bassler, Kevin E. & McCauley, Joseph L. & Gunaratne, Gemunu H., 2006. "Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets," MPRA Paper 2126, University Library of Munich, Germany.
    6. McCauley, Joseph L. & Gunaratne, Gemunu H. & Bassler, Kevin E., 2007. "Martingale option pricing," MPRA Paper 2151, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    2. Wahbeeah Mohti & Andreia Dionísio & Paulo Ferreira & Isabel Vieira, 2019. "Frontier markets’ efficiency: mutual information and detrended fluctuation analyses," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 551-572, September.
    3. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, nonstationary increments, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3916-3920.
    4. McCauley, Joseph L., 2008. "Time vs. ensemble averages for nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5518-5522.
    5. Aleksejus Kononovicius & Vygintas Gontis, 2019. "Approximation of the first passage time distribution for the birth-death processes," Papers 1902.00924, arXiv.org.
    6. Natália Costa & César Silva & Paulo Ferreira, 2019. "Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies," IJFS, MDPI, vol. 7(3), pages 1-12, September.
    7. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    8. McCauley, Joseph L., 2008. "Nonstationarity of efficient finance markets: FX market evolution from stability to instability," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 820-837, December.
    9. Bian, Siyu & Serra, Teresa & Garcia, Philip & Irwin, Scott, 2022. "New evidence on market response to public announcements in the presence of microstructure noise," European Journal of Operational Research, Elsevier, vol. 298(2), pages 785-800.
    10. McCauley, Joseph L., 2009. "ARCH and GARCH models vs. martingale volatility of finance market returns," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 151-153, September.
    11. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    12. Paulo Ferreira & Luís Carlos Loures, 2020. "An Econophysics Study of the S&P Global Clean Energy Index," Sustainability, MDPI, vol. 12(2), pages 1-9, January.
    13. Farhang Rahmani & Mohammad Hadi Fattahi, 2024. "Long-term evaluation of land use/land cover and hydrological drought patterns alteration consequences on river water quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 19051-19068, July.
    14. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2009. "Is integration I(d) applicable to observed economics and finance time series?," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 101-108, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    2. Bassler, Kevin E. & Gunaratne, Gemunu H. & McCauley, Joseph L., 2008. "Empirically based modeling in financial economics and beyond, and spurious stylized facts," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 767-783, December.
    3. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, nonstationary increments, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3916-3920.
    4. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    5. Bassler, Kevin E. & Gunaratne, Gemunu H. & McCauley, Joseph L., 2007. "Empirically Based Modeling in the Social Sciences and Spurious Stylized Facts," MPRA Paper 5813, University Library of Munich, Germany.
    6. Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2010. "Student's t-Distribution Based Option Sensitivities: Greeks for the Gosset Formulae," Papers 1003.1344, arXiv.org, revised Jul 2010.
    7. McCauley, Joseph L., 2007. "Ito Processes with Finitely Many States of Memory," MPRA Paper 5811, University Library of Munich, Germany.
    8. Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019. "Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
    9. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    10. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    11. Cassidy, Daniel T. & Hamp, Michael J. & Ouyed, Rachid, 2010. "Pricing European options with a log Student’s t-distribution: A Gosset formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5736-5748.
    12. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    13. Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2013. "Log Student’s t -distribution-based option sensitivities: Greeks for the Gosset formulae," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1289-1302, July.
    14. McCauley, Joseph L., 2007. "Fokker-Planck and Chapman-Kolmogorov equations for Ito processes with finite memory," MPRA Paper 2128, University Library of Munich, Germany.
    15. Cassidy, Daniel T., 2011. "Describing n-day returns with Student’s t-distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(15), pages 2794-2802.
    16. Yuan, Ying & Zhuang, Xin-tian, 2008. "Multifractal description of stock price index fluctuation using a quadratic function fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 511-518.
    17. McCauley, Joseph L., 2008. "Time vs. ensemble averages for nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5518-5522.
    18. Bucsa, G. & Jovanovic, F. & Schinckus, C., 2011. "A unified model for price return distributions used in econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3435-3443.
    19. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2007. "Martingales, Detrending Data, and the Efficient Market Hypothesis," MPRA Paper 2256, University Library of Munich, Germany.
    20. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:1:p:202-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.