IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i11d10.1007_s10668-022-02581-3.html
   My bibliography  Save this article

Energy-economics and environmental prospects of integrated waste-to-energy projects in the Beijing-Tianjin-Hebei region

Author

Listed:
  • Dan Cudjoe

    (Nanjing University of Information Science and Technology)

Abstract

A single municipal solid waste treatment technique may not be adequate to effectively treat the municipal solid waste (MSW) produced across the globe. This is due to the different composition and physical characteristics of the MSW. This has changed China's waste management strategy to integrated waste management systems since the 13th Five-Year-Plan in 2016. Therefore, the present study evaluates the electricity generation potential, economic feasibility, and the environmental impact of integrated waste-to-energy technologies in China, taking the Beijing-Tianjin-Hebei region as a case study. The study considers the integration of anaerobic digestion and landfill gas to energy (AD/LFGTE), anaerobic digestion and incineration (AD/INC), and incineration and landfill gas to energy (INC/LFGTE). The prominent findings show that AD/LFGTE has the highest electricity generation potential during the project period. It was found that AD/LFGTE contributed 24.52% to the region’s electricity needs, while AD/INC and INC/LFGTE contributed 22.68% and 1.88%, respectively. According to the economic analysis, all the projects are viable in the area and have a positive net present value. The AD/LFGTE project was found to be more economical with a lower levelized cost of energy (US$0.0915/kWh), shorter investment payback period (9.1 years), and higher profit (US$1,331.19 million) on investment. It was observed that the integrated systems could avoid a considerable amount of coal consumption and greenhouse gas emissions, with AD/LFGTE having the highest saving ability.

Suggested Citation

  • Dan Cudjoe, 2023. "Energy-economics and environmental prospects of integrated waste-to-energy projects in the Beijing-Tianjin-Hebei region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12597-12628, November.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02581-3
    DOI: 10.1007/s10668-022-02581-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02581-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02581-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Syaza I. & Ho, Wai Shin & Hassim, Mimi H. & Elagroudy, Sherien & Abdul Kohar, Rabiatul Adawiyyah & Bong, Cassendra Phun Chien & Hashim, Haslenda & Rashid, Roslina, 2020. "Development of quantitative SHE index for waste to energy technology selection," Energy, Elsevier, vol. 191(C).
    2. Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
    3. Cudjoe, Dan & Nketiah, Emmanuel & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Zhu, Bangzhu, 2021. "Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi," Energy, Elsevier, vol. 226(C).
    4. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    5. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    6. Creemers, Stefan, 2018. "Moments and distribution of the net present value of a serial project," European Journal of Operational Research, Elsevier, vol. 267(3), pages 835-848.
    7. Stefan Creemers, 2018. "Moments and distribution of the net present value of a serial project," Post-Print hal-01914841, HAL.
    8. Gong, Yuling & Li, Jintao & Li, Yixue, 2020. "Spatiotemporal characteristics and driving mechanisms of arable land in the Beijing-Tianjin-Hebei region during 1990-2015," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    9. Montorsi, L. & Milani, M. & Venturelli, M., 2018. "Economic assessment of an integrated waste to energy system for an urban sewage treatment plant: A numerical approach," Energy, Elsevier, vol. 158(C), pages 105-110.
    10. Zeaiter, Joseph & Azizi, Fouad & Lameh, Mohammad & Milani, Dia & Ismail, Hamza Y. & Abbas, Ali, 2018. "Waste tire pyrolysis using thermal solar energy: An integrated approach," Renewable Energy, Elsevier, vol. 123(C), pages 44-51.
    11. Knoke, Thomas & Gosling, Elizabeth & Paul, Carola, 2020. "Use and misuse of the net present value in environmental studies," Ecological Economics, Elsevier, vol. 174(C).
    12. Chen, Heng & Zhang, Meiyan & Xue, Kai & Xu, Gang & Yang, Yongping & Wang, Zepeng & Liu, Wenyi & Liu, Tong, 2020. "An innovative waste-to-energy system integrated with a coal-fired power plant," Energy, Elsevier, vol. 194(C).
    13. Silva, Leo Jaymee de Vilas Boas da & Santos, Ivan Felipe Silva dos & Mensah, Johnson Herlich Roslee & Gonçalves, Andriani Tavares Tenório & Barros, Regina Mambeli, 2020. "Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential," Renewable Energy, Elsevier, vol. 149(C), pages 1386-1394.
    14. Friesenhan, Christian & Agirre, Ion & Eltrop, Ludger & Arias, Pedro L., 2017. "Streamlined life cycle analysis for assessing energy and exergy performance as well as impact on the climate for landfill gas utilization technologies," Applied Energy, Elsevier, vol. 185(P1), pages 805-813.
    15. Alao, M.A. & Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Popoola, O.M., 2020. "Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria," Energy, Elsevier, vol. 201(C).
    16. Cudjoe, Dan & Han, Myat Su & Chen, Weiming, 2021. "Power generation from municipal solid waste landfilled in the Beijing-Tianjin-Hebei region," Energy, Elsevier, vol. 217(C).
    17. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    18. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhamad Subhi Apriantoro & Rizki Dwi Putra Rosadi & Arminda Cahya Ramdhani & Ninik Andriyani, 2024. "Shaping the Future of Environmental Economics: A Bibliometric Review of Current Trends and Future Directions," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 549-559, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dek Vimean Pheakdey & Nguyen Van Quan & Tran Dang Xuan, 2023. "Economic and Environmental Benefits of Energy Recovery from Municipal Solid Waste in Phnom Penh Municipality, Cambodia," Energies, MDPI, vol. 16(7), pages 1-19, April.
    2. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2024. "Maximizing the net present value of a project under uncertainty: Activity delays and dynamic policies," European Journal of Operational Research, Elsevier, vol. 317(1), pages 16-24.
    3. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    4. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    5. Hermans, Ben & Leus, Roel & Looy, Bart Van, 2023. "Deciding on scheduling, secrecy, and patenting during the new product development process: The relevance of project planning models," Omega, Elsevier, vol. 116(C).
    6. Dek Vimean Pheakdey & Vongdala Noudeng & Tran Dang Xuan, 2023. "Landfill Biogas Recovery and Its Contribution to Greenhouse Gas Mitigation," Energies, MDPI, vol. 16(12), pages 1-19, June.
    7. Donald Ukpanyang & Julio Terrados-Cepeda & Manuel Jesus Hermoso-Orzaez, 2022. "Multi-Criteria Selection of Waste-to-Energy Technologies for Slum/Informal Settlements Using the PROMETHEE Technique: A Case Study of the Greater Karu Urban Area in Nigeria," Energies, MDPI, vol. 15(10), pages 1-26, May.
    8. Agaton, Casper Boongaling & Guno, Charmaine Samala & Villanueva, Resy Ordona & Villanueva, Riza Ordona, 2020. "Economic analysis of waste-to-energy investment in the Philippines: A real options approach," Applied Energy, Elsevier, vol. 275(C).
    9. Chen, Heng & Wang, Yihan & Li, Jiarui & Xu, Gang & Lei, Jing & Liu, Tong, 2022. "Thermodynamic analysis and economic assessment of an improved geothermal power system integrated with a biomass-fired cogeneration plant," Energy, Elsevier, vol. 240(C).
    10. Masala, Fabiana & Groppi, Daniele & Nastasi, Benedetto & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Techno-economic analysis of biogas production and use scenarios in a small island energy system," Energy, Elsevier, vol. 258(C).
    11. Luo, Chao & Ju, Yanbing & Santibanez Gonzalez, Ernesto D.R. & Dong, Peiwu & Wang, Aihua, 2020. "The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China," Energy, Elsevier, vol. 211(C).
    12. Fatemeh Rezaei & Amir Abbas Najafi & Erik Demeulemeester & Reza Ramezanian, 2024. "A stochastic bi-objective project scheduling model under failure of activities," Annals of Operations Research, Springer, vol. 338(1), pages 453-476, July.
    13. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    14. Cudjoe, Dan & Han, Myat Su & Chen, Weiming, 2021. "Power generation from municipal solid waste landfilled in the Beijing-Tianjin-Hebei region," Energy, Elsevier, vol. 217(C).
    15. Grubbström, Robert W., 2022. "On the net present value distribution affected by a random walk process," International Journal of Production Economics, Elsevier, vol. 250(C).
    16. Khan, Muhammad Sajid & Huan, Qun & Yan, Mi & Ali, Mustajab & Noor, Obaid Ullah & Abid, Muhammad, 2022. "A novel configuration of solar integrated waste-to-energy incineration plant for multi-generational purpose: An effort for achieving maximum performance," Renewable Energy, Elsevier, vol. 194(C), pages 604-620.
    17. Vilardi, Giorgio & Verdone, Nicola, 2022. "Exergy analysis of municipal solid waste incineration processes: The use of O2-enriched air and the oxy-combustion process," Energy, Elsevier, vol. 239(PB).
    18. Alao, Moshood Akanni & Popoola, Olawale M. & Ayodele, Temitope Rapheal, 2021. "Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa," Renewable Energy, Elsevier, vol. 178(C), pages 162-183.
    19. Kristia Kristia & Mohammad Fazle Rabbi, 2023. "Exploring the Synergy of Renewable Energy in the Circular Economy Framework: A Bibliometric Study," Sustainability, MDPI, vol. 15(17), pages 1-27, September.
    20. Szmerekovsky, Joseph G. & Venkateshan, Prahalad & Simonson, Peter D., 2023. "Project scheduling under the threat of catastrophic disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 784-794.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02581-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.