IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i5d10.1007_s10668-021-01696-3.html
   My bibliography  Save this article

Thermo-economic analysis of a solar-powered absorption refrigeration integrated with a humidification–dehumidification desalination

Author

Listed:
  • Ighball Baniasad Askari

    (University of Zabol)

  • Hossein Ghazizade-Ahsaee

    (Technical and Vocational University (TVU))

  • Mehran Ameri

    (Shahid Bahonar University of Kerman)

Abstract

With the decrease in the fuel price subsidy in Iran, the urge for renewable energy sources to produce cooling and freshwater in a sustainable manner is becoming a challenge. Therefore, it is necessary to specify the marginal fuel price at which a solar-based cooling/water system is compatible with a fuel-based system. To this end, a solar-powered absorption refrigeration integrated with a humidification–dehumidification desalination system was thermo-economically evaluated to produce the freshwater and cooling production rates of nearly 0.58 m3/h and 28 ton/h, respectively, as well as the solar field output temperature of 175 °C. The levelized cost of product definition, which is based on the capital costs of the system, operation and maintenance costs as well as the discount rate, was used to calculate the cooling and freshwater unit of costs (COC and COW). The results demonstrated that the locations with high solar radiation levels require smaller solar field areas and larger thermal energy storage (TES) capacities, which leads to a higher percentage of annual solar share ( $$S_{{{\text{sh}}}}$$ S sh ), and consequently lower COC and COW values. For instance, Abu Dhabi and Athens with solar radiation levels of 1977 kWh/ $${\text{m}}^{2}$$ m 2 and 1514 kWh/ $${\text{m}}^{2}$$ m 2 , respectively, have the COC (or COW) of 0.135 $/ton (or 2.88 $/m3) and 0.387 $/ton (or 7.38 $/m3), respectively. The total annual fuel saving of the proposed system with 10 h of TES for the locations with the highest and lowest $$S_{{{\text{sh}}}}$$ S sh s [Abu Dhabi (77.97%), Athens (29.47%)] was obtained as $${1}.{38} \times 10^{6} \;{\text{m}}^{3}$$ 1.38 × 10 6 m 3 and 0.52 $$\times 10^{6} \;{\text{m}}^{3}$$ × 10 6 m 3 , respectively. In addition, since the fuel price is highly subsidized in three locations of the study, the solar-based system cannot economically compete with the fuel-based system unless the fuel cost increases by 500%, 36%, and 19% for Iran, Yemen, and United Arab Emirates, respectively.

Suggested Citation

  • Ighball Baniasad Askari & Hossein Ghazizade-Ahsaee & Mehran Ameri, 2022. "Thermo-economic analysis of a solar-powered absorption refrigeration integrated with a humidification–dehumidification desalination," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6153-6196, May.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:5:d:10.1007_s10668-021-01696-3
    DOI: 10.1007/s10668-021-01696-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01696-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01696-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Altun, A.F. & Kilic, M., 2020. "Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey," Renewable Energy, Elsevier, vol. 152(C), pages 75-93.
    2. Dabwan, Yousef N. & Pei, Gang, 2020. "A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis," Renewable Energy, Elsevier, vol. 152(C), pages 925-941.
    3. Norhan Bayomi & John E. Fernandez, 2019. "Towards Sustainable Energy Trends in the Middle East: A Study of Four Major Emitters," Energies, MDPI, vol. 12(9), pages 1-20, April.
    4. Ighball Baniasad Askari & Francesco Calise & Maria Vicidomini, 2019. "Design and Comparative Techno-Economic Analysis of Two Solar Polygeneration Systems Applied for Electricity, Cooling and Fresh Water Production," Energies, MDPI, vol. 12(22), pages 1-35, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ighball Baniasad Askari & Hossein Ghazizade-Ahsaee & Alibakhsh Kasaeian, 2023. "Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear fresnel and organic rankine cycle," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9439-9484, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    2. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    3. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    5. Ozili, Peterson K, 2022. "Sustainability and sustainable development research around the world," MPRA Paper 115767, University Library of Munich, Germany.
    6. Ekaterina Sokolova & Khashayar Sadeghi & Seyed Hadi Ghazaie & Dario Barsi & Francesca Satta & Pietro Zunino, 2022. "Feasibility of Hybrid Desalination Plants Coupled with Small Gas Turbine CHP Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
    7. Sui, Zengguang & Zhai, Chong & Wu, Wei, 2022. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration," Renewable Energy, Elsevier, vol. 187(C), pages 109-122.
    8. Dabwan, Yousef N. & Zhang, Liang & Pei, Gang, 2023. "A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions," Energy, Elsevier, vol. 283(C).
    9. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Dabwan, Yousef N. & Pei, Gang & Kwan, Trevor Hocksun & Zhao, Bin, 2021. "An innovative hybrid solar preheating intercooled gas turbine using parabolic trough collectors," Renewable Energy, Elsevier, vol. 179(C), pages 1009-1026.
    11. Omar M. Alkasasbeh & Abdalla Alassuli & Amro Alzghoul, 2023. "Energy Consumption, Economic Growth and CO2 Emissions in Middle East," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 322-327, January.
    12. Ryszard Bartnik & Zbigniew Buryn & Anna Hnydiuk-Stefan & Waldemar Skomudek & Aleksandra Otawa, 2020. "Thermodynamic and Economic Analysis of Trigeneration System Comprising a Hierarchical Gas-Gas Engine for Production of Electricity, Heat and Cold," Energies, MDPI, vol. 13(4), pages 1-33, February.
    13. Angelo Algieri & Pietropaolo Morrone & Sergio Bova, 2020. "Techno-Economic Analysis of Biofuel, Solar and Wind Multi-Source Small-Scale CHP Systems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    14. Karol Sztekler & Wojciech Kalawa & Lukasz Mika & Jaroslaw Krzywanski & Karolina Grabowska & Marcin Sosnowski & Wojciech Nowak & Tomasz Siwek & Artur Bieniek, 2020. "Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller," Energies, MDPI, vol. 13(3), pages 1-12, January.
    15. Wu, Wei & Zhai, Chong & Sui, Zengguang & Sui, Yunren & Luo, Xianglong, 2021. "Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 560-573.
    16. Behnam Roshanzadeh & Ashkan Asadi & Gowtham Mohan, 2023. "Technical and Economic Feasibility Analysis of Solar Inlet Air Cooling Systems for Combined Cycle Power Plants," Energies, MDPI, vol. 16(14), pages 1-23, July.
    17. Ighball Baniasad Askari & Hossein Ghazizade-Ahsaee & Alibakhsh Kasaeian, 2023. "Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear fresnel and organic rankine cycle," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9439-9484, September.
    18. Renos Rotas & Petros Iliadis & Nikos Nikolopoulos & Ananias Tomboulides & Elias Kosmatopoulos, 2022. "Dynamic Simulation and Performance Enhancement Analysis of a Renewable Driven Trigeneration System," Energies, MDPI, vol. 15(10), pages 1-27, May.
    19. Yongzhen Wang & Congchuan Hu & Boyuan Wu & Jing Zhang & Zhenning Zi & Ligai Kang, 2020. "Matching Characteristic Research of Building Renewable Energy System Based on Virtual Energy Storage of Air Conditioning Load," Energies, MDPI, vol. 13(5), pages 1-15, March.
    20. Yang Liu & Han Yue & Na Wang & Heng Zhang & Haiping Chen, 2020. "Design and Transient Analysis of a Natural Gas-Assisted Solar LCPV/T Trigeneration System," Energies, MDPI, vol. 13(22), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:5:d:10.1007_s10668-021-01696-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.