IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4401-d288685.html
   My bibliography  Save this article

Design and Comparative Techno-Economic Analysis of Two Solar Polygeneration Systems Applied for Electricity, Cooling and Fresh Water Production

Author

Listed:
  • Ighball Baniasad Askari

    (Department of Mechanical Engineering, Faculty of Engineering, University of Zabol, P.O. Box 98615-538, Zabol, Iran)

  • Francesco Calise

    (Department of Industrial Engineering, University of Naples Federico II, P. le Tecchio 80, 80125 Naples, Italy)

  • Maria Vicidomini

    (Department of Industrial Engineering, University of Naples Federico II, P. le Tecchio 80, 80125 Naples, Italy)

Abstract

Two solar polygeneration systems were investigated for electricity, cooling and fresh water production. In the first scenario ( LF PS ), the linear Fresnel (LF) solar field was used as thermal source of the Organic Rankine Cycle (ORC), absorption chiller (ACH) and multi-effect desalination (MED) unit. In the second scenario ( PV PS ), photovoltaic (PV) panels were considered as the electricity source to supply the electricity load that is required for lighting, electrical devices, compression chiller (CCH) and reverse osmosis (RO) units. A techno-economic comparison was made between two scenarios based on the land use factor (F), capacity utilization factor (CUF), payback period, levelized cost of electricity (LCE), levelized cost of cooling energy (LCC) and levelized cost of water (LCW). The calculations were conducted for four different locations in order to determine the effect of solar radiation level on the LCE, LCC and LCW of systems in both scenarios. The results showed that the LCE and LCW of PV PS is lower than that of LF PS and the LCC of LF PS is lower than that of PV PS . Also, the payback period of LF PS and PV PS systems are obtained as 13.97 years and 13.54 years, respectively, if no incentive is considered for the electricity sale.

Suggested Citation

  • Ighball Baniasad Askari & Francesco Calise & Maria Vicidomini, 2019. "Design and Comparative Techno-Economic Analysis of Two Solar Polygeneration Systems Applied for Electricity, Cooling and Fresh Water Production," Energies, MDPI, vol. 12(22), pages 1-35, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4401-:d:288685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    3. Yu, Haoshui & Gundersen, Truls & Feng, Xiao, 2018. "Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery," Energy, Elsevier, vol. 160(C), pages 330-340.
    4. Garcia-Saez, Irene & Méndez, Juan & Ortiz, Carlos & Loncar, Drazen & Becerra, José A. & Chacartegui, Ricardo, 2019. "Energy and economic assessment of solar Organic Rankine Cycle for combined heat and power generation in residential applications," Renewable Energy, Elsevier, vol. 140(C), pages 461-476.
    5. Palenzuela, Patricia & Zaragoza, Guillermo & Alarcón-Padilla, Diego-César, 2015. "Characterisation of the coupling of multi-effect distillation plants to concentrating solar power plants," Energy, Elsevier, vol. 82(C), pages 986-995.
    6. Baccioli, A. & Antonelli, M. & Desideri, U. & Grossi, A., 2018. "Thermodynamic and economic analysis of the integration of Organic Rankine Cycle and Multi-Effect Distillation in waste-heat recovery applications," Energy, Elsevier, vol. 161(C), pages 456-469.
    7. Calise, Francesco & Dentice d'Accadia, Massimo & Piacentino, Antonio, 2014. "A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 67(C), pages 129-148.
    8. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    9. Calise, Francesco & Figaj, Rafal Damian & Massarotti, Nicola & Mauro, Alessandro & Vanoli, Laura, 2017. "Polygeneration system based on PEMFC, CPVT and electrolyzer: Dynamic simulation and energetic and economic analysis," Applied Energy, Elsevier, vol. 192(C), pages 530-542.
    10. Shekarchian, M. & Moghavvemi, M. & Motasemi, F. & Mahlia, T.M.I., 2011. "Energy savings and cost-benefit analysis of using compression and absorption chillers for air conditioners in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1950-1960, May.
    11. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
    12. Khosravi, A. & Syri, Sanna & Assad, M.E.H. & Malekan, M., 2019. "Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system," Energy, Elsevier, vol. 172(C), pages 304-319.
    13. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    14. Patil, Vikas R. & Biradar, Vijay Irappa & Shreyas, R. & Garg, Pardeep & Orosz, Matthew S. & Thirumalai, N.C., 2017. "Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage," Renewable Energy, Elsevier, vol. 113(C), pages 1250-1260.
    15. Calise, F. & Dentice d'Accadia, M. & Piacentino, A., 2015. "Exergetic and exergoeconomic analysis of a renewable polygeneration system and viability study for small isolated communities," Energy, Elsevier, vol. 92(P3), pages 290-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekaterina Sokolova & Khashayar Sadeghi & Seyed Hadi Ghazaie & Dario Barsi & Francesca Satta & Pietro Zunino, 2022. "Feasibility of Hybrid Desalination Plants Coupled with Small Gas Turbine CHP Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
    2. Angelo Algieri & Pietropaolo Morrone & Sergio Bova, 2020. "Techno-Economic Analysis of Biofuel, Solar and Wind Multi-Source Small-Scale CHP Systems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    3. Ighball Baniasad Askari & Hossein Ghazizade-Ahsaee & Alibakhsh Kasaeian, 2023. "Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear fresnel and organic rankine cycle," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9439-9484, September.
    4. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    5. Ataee, Sadegh & Ameri, Mehran & Askari, Ighball Baniasad & Keshtegar, Behrooz, 2024. "Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches," Energy, Elsevier, vol. 298(C).
    6. Karol Sztekler & Wojciech Kalawa & Lukasz Mika & Jaroslaw Krzywanski & Karolina Grabowska & Marcin Sosnowski & Wojciech Nowak & Tomasz Siwek & Artur Bieniek, 2020. "Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller," Energies, MDPI, vol. 13(3), pages 1-12, January.
    7. Yang Liu & Han Yue & Na Wang & Heng Zhang & Haiping Chen, 2020. "Design and Transient Analysis of a Natural Gas-Assisted Solar LCPV/T Trigeneration System," Energies, MDPI, vol. 13(22), pages 1-24, November.
    8. Ighball Baniasad Askari & Hossein Ghazizade-Ahsaee & Mehran Ameri, 2022. "Thermo-economic analysis of a solar-powered absorption refrigeration integrated with a humidification–dehumidification desalination," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6153-6196, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    2. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    3. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    4. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    5. Usón, Sergio & Uche, Javier & Martínez, Amaya & del Amo, Alejandro & Acevedo, Luis & Bayod, Ángel, 2019. "Exergy assessment and exergy cost analysis of a renewable-based and hybrid trigeneration scheme for domestic water and energy supply," Energy, Elsevier, vol. 168(C), pages 662-683.
    6. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    8. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    11. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    12. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    13. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    14. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    15. Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.
    16. Abdelhay, AymanO. & Fath, HassanE.S. & Nada, S.A., 2020. "Solar driven polygeneration system for power, desalination and cooling," Energy, Elsevier, vol. 198(C).
    17. Gronier, Timothé & Fitó, Jaume & Franquet, Erwin & Gibout, Stéphane & Ramousse, Julien, 2022. "Iterative sizing of solar-assisted mixed district heating network and local electrical grid integrating demand-side management," Energy, Elsevier, vol. 238(PA).
    18. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Complex Polygeneration System for a Hospital," Energies, MDPI, vol. 11(5), pages 1-24, April.
    19. Zhang, Shuai & Yan, Yuying, 2022. "Evaluation of discharging performance of molten salt/ceramic foam composite phase change material in a shell-and-tube latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 198(C), pages 1210-1223.
    20. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4401-:d:288685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.