IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3688-d818203.html
   My bibliography  Save this article

Dynamic Simulation and Performance Enhancement Analysis of a Renewable Driven Trigeneration System

Author

Listed:
  • Renos Rotas

    (Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Egialeias 52, Maroussi, 11525 Athens, Greece
    Laboratory of Applied Thermodynamics, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Petros Iliadis

    (Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Egialeias 52, Maroussi, 11525 Athens, Greece
    Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece)

  • Nikos Nikolopoulos

    (Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Egialeias 52, Maroussi, 11525 Athens, Greece)

  • Ananias Tomboulides

    (Laboratory of Applied Thermodynamics, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Elias Kosmatopoulos

    (Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece)

Abstract

Research activity in the field of combined cooling heating power (or trigeneration) systems with high renewable energy source (RES) contributions has increased rapidly over the last few years, in line with the European Union legislation about energy communities. However, technical challenges arise regarding the synergetic, sustainable and optimal integration of RES in local energy systems. In the present study, the operation of a trigeneration system located in the student residences of Democritus University of Thrace in Greece is examined. The system involves a combination of highly promising renewable and storage technologies, including solar thermal energy and biomass for heat generation, hot water tanks for thermal energy storage, absorption refrigeration for cooling, along with Organic Rankine Cycle and photovoltaic systems for electricity generation. System modeling and simulation have been implemented in Dymola environment with the use of Modelica equation-based modeling language. The accuracy of the model response has been validated against available measurements. Specific design and control measures have been proposed, simulated in a transient fashion and evaluated in terms of (i) RES generation, (ii) solar fraction and (iii) temporal flexibility. The measures examined, including the placement of a Li-ion battery, resulted in an increase of 24.6% in the heating demand solar contribution and of 7.9% in the renewable energy generated for the electricity demand, over the examined periods.

Suggested Citation

  • Renos Rotas & Petros Iliadis & Nikos Nikolopoulos & Ananias Tomboulides & Elias Kosmatopoulos, 2022. "Dynamic Simulation and Performance Enhancement Analysis of a Renewable Driven Trigeneration System," Energies, MDPI, vol. 15(10), pages 1-27, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3688-:d:818203
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3688/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fauzan Hanif Jufri & Dwi Riana Aryani & Iwa Garniwa & Budi Sudiarto, 2021. "Optimal Battery Energy Storage Dispatch Strategy for Small-Scale Isolated Hybrid Renewable Energy System with Different Load Profile Patterns," Energies, MDPI, vol. 14(11), pages 1-19, May.
    2. Luis Acevedo & Javier Uche & Alejandro Del Almo & Fernando Círez & Sergio Usón & Amaya Martínez & Isabel Guedea, 2016. "Dynamic Simulation of a Trigeneration Scheme for Domestic Purposes Based on Hybrid Techniques," Energies, MDPI, vol. 9(12), pages 1-25, November.
    3. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    4. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    5. Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.
    6. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    7. Hector Beltran & Pablo Ayuso & Emilio Pérez, 2020. "Lifetime Expectancy of Li-Ion Batteries used for Residential Solar Storage," Energies, MDPI, vol. 13(3), pages 1-18, January.
    8. López González, Diana María & Garcia Rendon, John, 2022. "Opportunities and challenges of mainstreaming distributed energy resources towards the transition to more efficient and resilient energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Dabwan, Yousef N. & Pei, Gang, 2020. "A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis," Renewable Energy, Elsevier, vol. 152(C), pages 925-941.
    10. Hirmiz, R. & Lightstone, M.F. & Cotton, J.S., 2018. "Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials," Applied Energy, Elsevier, vol. 223(C), pages 11-29.
    11. Tourkov, Konstantin & Schaefer, Laura, 2015. "Performance evaluation of a PVT/ORC (photovoltaic thermal/organic Rankine cycle) system with optimization of the ORC and evaluation of several PV (photovoltaic) materials," Energy, Elsevier, vol. 82(C), pages 839-849.
    12. Palomba, Valeria & Borri, Emiliano & Charalampidis, Antonios & Frazzica, Andrea & Cabeza, Luisa F. & Karellas, Sotirios, 2020. "Implementation of a solar-biomass system for multi-family houses: Towards 100% renewable energy utilization," Renewable Energy, Elsevier, vol. 166(C), pages 190-209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    2. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    3. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    4. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    5. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    6. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    7. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    8. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    9. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George J. Anders, 2024. "A Stochastic Decision-Making Tool Suite for Distributed Energy Resources Integration in Energy Markets," Energies, MDPI, vol. 17(10), pages 1-28, May.
    10. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    11. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    12. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    13. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    15. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Hsu, Chia-Wei & Xiong, Rui & Chen, Nan-Yow & Li, Ju & Tsou, Nien-Ti, 2022. "Deep neural network battery life and voltage prediction by using data of one cycle only," Applied Energy, Elsevier, vol. 306(PB).
    17. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    18. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    19. Prahaladh Paniyil & Vishwas Powar & Rajendra Singh & Benjamin Hennigan & Pamela Lule & Matthew Allison & John Kimsey & Anthony Carambia & Dhruval Patel & Daniel Carrillo & Zachary Shriber & Truman Baz, 2020. "Photovoltaics- and Battery-Based Power Network as Sustainable Source of Electric Power," Energies, MDPI, vol. 13(19), pages 1-22, September.
    20. Li, Wenjia & Ling, Yunyi & Liu, Xiangxin & Hao, Yong, 2017. "Performance analysis of a photovoltaic-thermochemical hybrid system prototype," Applied Energy, Elsevier, vol. 204(C), pages 939-947.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3688-:d:818203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.