IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i4d10.1007_s10668-021-01685-6.html
   My bibliography  Save this article

Carbon footprint of different fuels used in public transportation in Taiwan: a life cycle assessment

Author

Listed:
  • Ching-Chih Chang

    (National Cheng Kung University)

  • Po-Chien Huang

    (National Cheng Kung University)

Abstract

This research is an investigation of public transport carbon footprints using a life cycle assessment (the model of total carbon footprint as Eq. 1 on page 17) considering four different types of fuel (diesel, electric, liquefied natural gas, and hydrogen). This paper refers to ISO 14040:2006 and ISO 14067:2018 to evaluate the carbon footprints of these four different types of fuel. The bus transportation service in Kaohsiung, Taiwan, is the object, focusing on the route with the largest number of passengers. The results reveal that the hydrogen fuel cell bus emitted the least GHGs over its life cycle, with a reduction of − 67.52% compared to a diesel bus, while the electronic bus emitted − 55.13% less GHG over its life cycle, and the liquefied natural gas bus emitted − 45.81% less. These mean diesel buses and liquefied natural gas buses accounted for the most emissions in the bus service fuel phase of the carbon footprint life cycle. However, electric and hydrogen fuel cell buses do not emit GHGs in the bus service phase in terms of fuel. The phases involving the extraction and manufacturing of raw materials for both kinds of buses account for most of the life cycle emissions. In conclusion, the results of this study show that the hydrogen fuel cell bus has the greatest effects with regard to reducing GHG emissions among the three types of buses under consideration, and so, it is recommended that hydrogen fuel cell buses be widely applied in bus transportation in the future.

Suggested Citation

  • Ching-Chih Chang & Po-Chien Huang, 2022. "Carbon footprint of different fuels used in public transportation in Taiwan: a life cycle assessment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5811-5825, April.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01685-6
    DOI: 10.1007/s10668-021-01685-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01685-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01685-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2020. "Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia," Applied Energy, Elsevier, vol. 279(C).
    2. Nanaki, E.A. & Koroneos, C.J. & Xydis, G.A. & Rovas, D., 2014. "Comparative environmental assessment of Athens urban buses—Diesel, CNG and biofuel powered," Transport Policy, Elsevier, vol. 35(C), pages 311-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasios Gialos & Vasileios Zeimpekis & Michael Madas & Konstantinos Papageorgiou, 2022. "Calculation and Assessment of CO 2e Emissions in Road Freight Transportation: A Greek Case Study," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    2. Shang, Wen-Long & Chen, Yishui & Yu, Qing & Song, Xuewang & Chen, Yanyan & Ma, Xiaolei & Chen, Xiqun & Tan, Zhijia & Huang, Jianling & Ochieng, Washington, 2023. "Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Rodriguez Valido & Javier Perez Marrero & Argelio Mauro González & Peña Fabiani Bendicho & Carlos Efrem Mora, 2023. "Evaluation of the Potential of Sentinel-5P TROPOMI and AIS Marine Traffic Data for the Monitoring of Anthropogenic Activity and Maritime Transport NOx-Emissions in Canary Islands Waters," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    2. Lovro Frković & Boris Ćosić & Tomislav Pukšec & Nikola Vladimir, 2023. "Modelling of the Standalone Onshore Charging Station: The Nexus between Offshore Renewables and All-Electric Ships," Energies, MDPI, vol. 16(15), pages 1-16, August.
    3. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    4. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    6. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    7. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    8. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    9. Tena Bujas & Marija Koričan & Manuela Vukić & Vladimir Soldo & Nikola Vladimir & Ailong Fan, 2022. "Review of Energy Consumption by the Fish Farming and Processing Industry in Croatia and the Potential for Zero-Emissions Aquaculture," Energies, MDPI, vol. 15(21), pages 1-26, November.
    10. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    11. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    13. Park, Chybyung & Jeong, Byongug & Zhou, Peilin & Jang, Hayoung & Kim, Seongwan & Jeon, Hyeonmin & Nam, Dong & Rashedi, Ahmad, 2022. "Live-Life cycle assessment of the electric propulsion ship using solar PV," Applied Energy, Elsevier, vol. 309(C).
    14. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    15. Pérez, Javier & de Andrés, Juan Manuel & Borge, Rafael & de la Paz, David & Lumbreras, Julio & Rodríguez, Encarnación, 2019. "Vehicle fleet characterization study in the city of Madrid and its application as a support tool in urban transport and air quality policy development," Transport Policy, Elsevier, vol. 74(C), pages 114-126.
    16. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    17. Magdalena Klopott & Marzenna Popek & Ilona Urbanyi-Popiołek, 2023. "Seaports’ Role in Ensuring the Availability of Alternative Marine Fuels—A Multi-Faceted Analysis," Energies, MDPI, vol. 16(7), pages 1-30, March.
    18. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    19. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    20. George Dalianis & Evanthia Nanaki & George Xydis & Efthimios Zervas, 2016. "New Aspects to Greenhouse Gas Mitigation Policies for Low Carbon Cities," Energies, MDPI, vol. 9(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01685-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.