IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9384-d1000405.html
   My bibliography  Save this article

Analysis of Energy Consumption of Novel Re-Liquefaction System Integrated with Fuel Supply System (FSS) for LPG-Fuelled LPG Carrier to Conventional Systems

Author

Listed:
  • Youngkyun Seo

    (Offshore Industries R&BD Center, Korea Research Institute of Ships & Ocean Engineering, 1350 Geojebuk-ro, Geoje-si 53201, Republic of Korea)

  • Jintae Kim

    (Offshore Industries R&BD Center, Korea Research Institute of Ships & Ocean Engineering, 1350 Geojebuk-ro, Geoje-si 53201, Republic of Korea)

  • Eunyoung Park

    (Offshore Industries R&BD Center, Korea Research Institute of Ships & Ocean Engineering, 1350 Geojebuk-ro, Geoje-si 53201, Republic of Korea)

  • Jinkwang Lee

    (Department of Naval Architecture and Offshore Engineering, Dong-A University, 37 Nakdong-daero 550, Busan 49315, Republic of Korea)

  • Meangik Cho

    (Offshore Industries R&BD Center, Korea Research Institute of Ships & Ocean Engineering, 1350 Geojebuk-ro, Geoje-si 53201, Republic of Korea)

  • Seongjong Han

    (Offshore Industries R&BD Center, Korea Research Institute of Ships & Ocean Engineering, 1350 Geojebuk-ro, Geoje-si 53201, Republic of Korea)

Abstract

This study analysed a novel re-liquefaction system integrated with a fuel supply system (FSS) for an LPG carrier to conventional systems. The re-liquefaction system and FSS were installed independently in a conventional LPG carrier, while those systems were combined in the novel system. The condensed LPG in the re-liquefaction system was directly transferred to the FSS without the cooling and expansion process in the novel system. 84,000 m 3 LPG carrier equipped with a 10 MW engine at normal continuous rating (NCR) was selected as a target ship. Aspen HYSYS ver.12.1 was employed for process simulation. The results showed that the energy consumption for the novel system was reduced by 38%. The energy for re-liquefaction was decreased because the flow rate recirculated was decreased, and the energy for FSS was reduced as the temperature of the stream supplied to the FSS was relatively high in the novel system. A sensitivity analysis was conducted to investigate the effect of the parameters on the results. The investigated parameters were LPG compositions, seawater temperature, compressor efficiency, and pump efficiency. The energy consumption for the system was significantly different depending on the LPG composition, and the energy consumption was changed by 2.5% for conventional systems and 0.9% for the novel systems with the variation of 4 °C seawater temperature. The energy for the novel system was reduced by 2.8% for conventional systems and 2.3% for the novel systems with the 5% increment of compressor efficiency, whereas pump efficiency had little effect on the results.

Suggested Citation

  • Youngkyun Seo & Jintae Kim & Eunyoung Park & Jinkwang Lee & Meangik Cho & Seongjong Han, 2022. "Analysis of Energy Consumption of Novel Re-Liquefaction System Integrated with Fuel Supply System (FSS) for LPG-Fuelled LPG Carrier to Conventional Systems," Energies, MDPI, vol. 15(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9384-:d:1000405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2020. "Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia," Applied Energy, Elsevier, vol. 279(C).
    2. Mäkitie, Tuukka & Steen, Markus & Saether, Erik Andreas & Bjørgum, Øyvind & Poulsen, René T., 2022. "Norwegian ship-owners' adoption of alternative fuels," Energy Policy, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Rodriguez Valido & Javier Perez Marrero & Argelio Mauro González & Peña Fabiani Bendicho & Carlos Efrem Mora, 2023. "Evaluation of the Potential of Sentinel-5P TROPOMI and AIS Marine Traffic Data for the Monitoring of Anthropogenic Activity and Maritime Transport NOx-Emissions in Canary Islands Waters," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    2. Akoh Fabien Yao & Maxime Sèbe & Laura Recuero Virto & Abdelhak Nassiri & Hervé Dumez, 2024. "The effect of LNG bunkering on port competitiveness using multilevel data analysis [L'effet du soutage par GNL sur la compétitivité des ports à l'aide de l'analyse de données à plusieurs niveaux]," Post-Print hal-04611804, HAL.
    3. Lovro Frković & Boris Ćosić & Tomislav Pukšec & Nikola Vladimir, 2023. "Modelling of the Standalone Onshore Charging Station: The Nexus between Offshore Renewables and All-Electric Ships," Energies, MDPI, vol. 16(15), pages 1-16, August.
    4. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    5. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    7. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    8. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    9. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    10. Tena Bujas & Marija Koričan & Manuela Vukić & Vladimir Soldo & Nikola Vladimir & Ailong Fan, 2022. "Review of Energy Consumption by the Fish Farming and Processing Industry in Croatia and the Potential for Zero-Emissions Aquaculture," Energies, MDPI, vol. 15(21), pages 1-26, November.
    11. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    13. Park, Chybyung & Jeong, Byongug & Zhou, Peilin & Jang, Hayoung & Kim, Seongwan & Jeon, Hyeonmin & Nam, Dong & Rashedi, Ahmad, 2022. "Live-Life cycle assessment of the electric propulsion ship using solar PV," Applied Energy, Elsevier, vol. 309(C).
    14. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    15. Magdalena Klopott & Marzenna Popek & Ilona Urbanyi-Popiołek, 2023. "Seaports’ Role in Ensuring the Availability of Alternative Marine Fuels—A Multi-Faceted Analysis," Energies, MDPI, vol. 16(7), pages 1-30, March.
    16. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    17. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    18. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    19. Abdulaziz M. T. Alzayedi & Abdullah N. F. N. R. Alkhaledi & Suresh Sampath & Pericles Pilidis, 2023. "TERA of Gas Turbine Propulsion Systems for RORO Ships," Energies, MDPI, vol. 16(16), pages 1-16, August.
    20. Styliani Livaniou & Georgios A. Papadopoulos, 2022. "Liquefied Natural Gas (LNG) as a Transitional Choice Replacing Marine Conventional Fuels (Heavy Fuel Oil/Marine Diesel Oil), towards the Era of Decarbonisation," Sustainability, MDPI, vol. 14(24), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9384-:d:1000405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.