IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i3d10.1007_s10668-021-01295-2.html
   My bibliography  Save this article

Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam

Author

Listed:
  • Ngo Thanh Son

    (Vietnam National University of Agriculture
    Consulting Center of Technological Sciences for Natural Resources and Environment)

  • Hoang Huong

    (University of the Philippines Los Baños, College)

  • Nguyen Duc Loc

    (Vietnam National University of Agriculture
    Feng Chia University)

  • Tran Trong Phuong

    (Vietnam National University of Agriculture)

Abstract

Land use and land cover (LULC) changes, climate variability and climate change (CC) contribute hydrological response in tropical catchments, but their individual and combined effects are not yet well known. To understand watershed hydrology, remote sensing was used for quantifying the change in land use for the years 1992 and 2015. Subsequently, the spatial distributed SWAT model was implemented to simulate the hydrological responses for the Nam Rom Catchment of Vietnam. It was found that the SWAT model could be well simulated flow in the catchment by the value of Nash–Sutcliffe Efficiency (NES), coefficient of determination (R2), and percent bias (PBIAS) values 0.76, 0.76, and 6.76 for the calibration and 0.64, 0.65, and 8.37, for the validation, respectively. In addition, a strong correlation between land use changes (1992 and 2015) and increasing evapotranspiration, percolation, groundwater, and water yield was found. On the other hand, change in climate results in decrease in all hydrological components (ET (2.3%), percolation (9.8%), surface runoff (11.5%), groundwater flow (10.5%), and water yield (10.8%). The correlative distributions of combined LULC and CC led to decrease in significantly in groundwater (−5.7%), surface flow (−16.9%), and water yield (−9.2%). In short, CC had a more significant effect on hydrological responses than LULC in the Nam Rom Catchment in the period of 1992–2015. A simulation was also done to evaluate the projected LULC and CC on catchment hydrology in 2030. The simulation results showed that evapotranspiration and surface flow are the most sensitive hydrological responses in the future. These findings could be used in developing long-term LULC planning programs and CC adaptation as well in the Nam Rom catchment and other regions of Vietnam. Graphical abstract

Suggested Citation

  • Ngo Thanh Son & Hoang Huong & Nguyen Duc Loc & Tran Trong Phuong, 2022. "Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3091-3109, March.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:3:d:10.1007_s10668-021-01295-2
    DOI: 10.1007/s10668-021-01295-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01295-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01295-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 153-175, May.
    2. Xingang Fan & Zhuguo Ma & Qing Yang & Yunhuan Han & Rezaul Mahmood, 2015. "Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part II: interrelationship from observations," Climatic Change, Springer, vol. 129(3), pages 441-455, April.
    3. Nguyen Thi Huyen & Le Hoang Tu & Nguyen Duy Liem & Vo Ngoc Quyn Tram & Duong Ngoc Minh & Nguyen Kim Loi, 2017. "Assessing Impacts of Land Use and Climate Change on Soil and Water Resources in the Srepok Watershed, Central Highland of Vietnam," Agriculture and Development Discussion Paper Series 2017-2, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA).
    4. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya: reply to comment by Shah 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 1-5, August.
    5. Xingang Fan & Zhuguo Ma & Qing Yang & Yunhuan Han & Rezaul Mahmood & Ziyan Zheng, 2015. "Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part I: observational evidence," Climatic Change, Springer, vol. 129(3), pages 427-440, April.
    6. Swades Pal & Swapan Talukdar, 2020. "Assessing the role of hydrological modifications on land use/land cover dynamics in Punarbhaba river basin of Indo-Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 363-382, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xueliang & Ding, Beibei & Hou, Yonghao & Feng, Puyu & Liu, De Li & Srinivasan, Raghavan & Chen, Yong, 2024. "Assessing the feasibility of sprinkler irrigation schemes and their adaptation to future climate change in groundwater over-exploitation regions," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    2. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    3. Tusar Kanti Hembram & Sunil Saha, 2020. "Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1241-1268, February.
    4. Ahmed Mustafa & Xiao Wei Zhang & Daniel G Aliaga & Martin Bruwier & Gen Nishida & Benjamin Dewals & Sébastian Erpicum & Pierre Archambeau & Michel Pirotton & Jacques Teller, 2020. "Procedural generation of flood-sensitive urban layouts," Environment and Planning B, , vol. 47(5), pages 889-911, June.
    5. Desirée Tullos & Elizabeth Byron & Gerald Galloway & Jayantha Obeysekera & Om Prakash & Yung-Hsin Sun, 2016. "Review of challenges of and practices for sustainable management of mountain flood hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1763-1797, September.
    6. S. Panwar & V. Agarwal & G. J. Chakrapani, 2017. "Morphometric and sediment source characterization of the Alaknanda river basin, headwaters of river Ganga, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1649-1671, July.
    7. Pallavi Tomar & Suraj Kumar Singh & Shruti Kanga & Gowhar Meraj & Nikola Kranjčić & Bojan Đurin & Amitanshu Pattanaik, 2021. "GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    8. Hazem Ghassan Abdo, 2020. "Evolving a total-evaluation map of flash flood hazard for hydro-prioritization based on geohydromorphometric parameters and GIS–RS manner in Al-Hussain river basin, Tartous, Syria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 681-703, October.
    9. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    10. Noureen Ali & Akhtar Alam & M. Sultan Bhat & Bilquis Shah, 2022. "Using historical data for developing a hazard and disaster profile of the Kashmir valley for the period 1900–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1609-1646, November.
    11. Ruhhee Tabbussum & Abdul Qayoom Dar, 2021. "Modelling hybrid and backpropagation adaptive neuro-fuzzy inference systems for flood forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 519-566, August.
    12. Gowhar Meraj & Majid Farooq & Suraj Kumar Singh & Shakil A. Romshoo & Sudhanshu & M. S. Nathawat & Shruti Kanga, 2021. "Coronavirus pandemic versus temperature in the context of Indian subcontinent: a preliminary statistical analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6524-6534, April.
    13. Qinghui Wang & Yu Peng & Min Fan & Zheng Zhang & Qingtong Cui, 2018. "Landscape Patterns Affect Precipitation Differing across Sub-climatic Regions," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    14. Ishfaq Hussain Malik, 2022. "Spatial dimension of impact, relief, and rescue of the 2014 flood in Kashmir Valley," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1911-1929, February.
    15. Omvir Singh & Dinesh Kumar, 2019. "Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north-west India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 247-268, March.
    16. Wael M. Elsadek & Mona G. Ibrahim & Wael Elham Mahmod & Shinjiro Kanae, 2019. "Developing an overall assessment map for flood hazard on large area watershed using multi-method approach: case study of Wadi Qena watershed, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 739-767, February.
    17. Lei Tian & Jiming Jin & Pute Wu & Guo-yue Niu, 2018. "Assessment of the Effects of Climate Change on Evapotranspiration with an Improved Elasticity Method in a Nonhumid Area," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    18. Bosy A. El-Haddad & Ahmed M. Youssef & Hamid R. Pourghasemi & Biswajeet Pradhan & Abdel-Hamid El-Shater & Mohamed H. El-Khashab, 2021. "Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 83-114, January.
    19. Sachchidanand Singh & Pankaj R. Dhote & Praveen K. Thakur & Arpit Chouksey & S. P. Aggarwal, 2021. "Identification of flash-floods-prone river reaches in Beas river basin using GIS-based multi-criteria technique: validation using field and satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2431-2453, February.
    20. Mao Ouyang & Yuka Ito & Tomochika Tokunaga, 2021. "Effects of geomorphological and geohydrological features on flood hazard in a coastal basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1371-1385, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:3:d:10.1007_s10668-021-01295-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.