IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v96y2019i1d10.1007_s11069-018-3540-4.html
   My bibliography  Save this article

Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north-west India

Author

Listed:
  • Omvir Singh

    (Kurukshetra University)

  • Dinesh Kumar

    (Kurukshetra University)

Abstract

The terrain characteristics determine the hydrological response behaviour of watershed systems and have serious effect on incidence and magnitude of floods. Assessment of floods in watershed systems is one of the most complex processes in hydrological investigations. Therefore, this study evaluates the influence of watershed terrain characteristics on flood vulnerability of Markanda River basin in north-west India based on geospatial techniques coupled with field data. This basin is subjected to frequent floods during monsoons (July–September) causing heavy damage to agriculture and other infrastructure. For this study, Cartosat-1-based digital elevation model was used as input data in geographic information system to delineate the Markanda basin and its sub-basins. Subsequently, various watershed characteristics (linear, areal, shape and relief) were selected, measured, calculated and interlinked to evaluate the degree of flood vulnerability. These selected characteristics were both directly and inversely proportional to flooding behaviour. The results of these parameters were analysed and categorized into three classes using simple statistical technique, and then, rank score was assigned to each class of all selected parameters depending on its relation to flood hazard. Apart from this, flood vulnerability was recognized and categorized into high, moderate and low degree of hazard. Analysis reveals that about 7, 21 and 72% area of the basin is vulnerable to high, moderate and low degree of floods, respectively. High flood vulnerable areas are located in upper reaches where about 2.8% of human population is settled. These reaches are characterized by steep slopes, impermeable and barren surfaces and high basin relief. The accuracy of vulnerable areas was assessed through secondary data pertaining to past floods damages such as number of affected villages, households and population, economic losses, relief released, crop damages and human casualties. The findings of this study can assist disaster managers in initiating the flood mitigation measures in highly vulnerable areas of Markanda basin in north-west India.

Suggested Citation

  • Omvir Singh & Dinesh Kumar, 2019. "Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north-west India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 247-268, March.
  • Handle: RePEc:spr:nathaz:v:96:y:2019:i:1:d:10.1007_s11069-018-3540-4
    DOI: 10.1007/s11069-018-3540-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3540-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3540-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya: reply to comment by Shah 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 1-5, August.
    2. Roger Few, 2003. "Flooding, vulnerability and coping strategies: local responses to a global threat," Progress in Development Studies, , vol. 3(1), pages 43-58, January.
    3. Atta-ur-Rahman & Amir Khan, 2013. "Analysis of 2010-flood causes, nature and magnitude in the Khyber Pakhtunkhwa, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 887-904, March.
    4. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 153-175, May.
    5. Atta-ur-Rahman & Amir Khan, 2011. "Analysis of flood causes and associated socio-economic damages in the Hindukush region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1239-1260, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Wu & Xiaomin Sun & Zhaofeng Wang & Yili Zhang & Qionghuan Liu & Binghua Zhang & Basanta Paudel & Fangdi Xie, 2020. "Vegetation Changes and Their Response to Global Change Based on NDVI in the Koshi River Basin of Central Himalayas Since 2000," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    2. Alaa Ahmed & Abdullah Alrajhi & Abdulaziz Alquwaizany & Ali Al Maliki & Guna Hewa, 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia," Sustainability, MDPI, vol. 14(23), pages 1-23, December.
    3. Mustafa El-Rawy & Wael M. Elsadek & Florimond Smedt, 2023. "Flood hazard assessment and mitigation using a multi-criteria approach in the Sinai Peninsula, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 215-236, January.
    4. Alaa Ahmed & Guna Hewa & Abdullah Alrajhi, 2021. "Flood susceptibility mapping using a geomorphometric approach in South Australian basins," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 629-653, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    2. Tusar Kanti Hembram & Sunil Saha, 2020. "Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1241-1268, February.
    3. Pallavi Tomar & Suraj Kumar Singh & Shruti Kanga & Gowhar Meraj & Nikola Kranjčić & Bojan Đurin & Amitanshu Pattanaik, 2021. "GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    4. Ngo Thanh Son & Hoang Huong & Nguyen Duc Loc & Tran Trong Phuong, 2022. "Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3091-3109, March.
    5. Muhammad Hussain & Muhammad Tayyab & Jiquan Zhang & Ashfaq Ahmad Shah & Kashif Ullah & Ummer Mehmood & Bazel Al-Shaibah, 2021. "GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    6. Ruhhee Tabbussum & Abdul Qayoom Dar, 2021. "Modelling hybrid and backpropagation adaptive neuro-fuzzy inference systems for flood forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 519-566, August.
    7. Ishfaq Hussain Malik, 2022. "Spatial dimension of impact, relief, and rescue of the 2014 flood in Kashmir Valley," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1911-1929, February.
    8. Aftab, Ashar & Ahmed, Ajaz & Scarpa, Riccardo, 2021. "Farm households' perception of weather change and flood adaptations in northern Pakistan," Ecological Economics, Elsevier, vol. 182(C).
    9. Shakeel Mahmood & Amin-ul-Haq Khan & Shaker Mahmood Mayo, 2016. "Exploring underlying causes and assessing damages of 2010 flash flood in the upper zone of Panjkora River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1213-1227, September.
    10. Sachchidanand Singh & Pankaj R. Dhote & Praveen K. Thakur & Arpit Chouksey & S. P. Aggarwal, 2021. "Identification of flash-floods-prone river reaches in Beas river basin using GIS-based multi-criteria technique: validation using field and satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2431-2453, February.
    11. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    12. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    13. Ahmed Mustafa & Xiao Wei Zhang & Daniel G Aliaga & Martin Bruwier & Gen Nishida & Benjamin Dewals & Sébastian Erpicum & Pierre Archambeau & Michel Pirotton & Jacques Teller, 2020. "Procedural generation of flood-sensitive urban layouts," Environment and Planning B, , vol. 47(5), pages 889-911, June.
    14. Desirée Tullos & Elizabeth Byron & Gerald Galloway & Jayantha Obeysekera & Om Prakash & Yung-Hsin Sun, 2016. "Review of challenges of and practices for sustainable management of mountain flood hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1763-1797, September.
    15. S. Panwar & V. Agarwal & G. J. Chakrapani, 2017. "Morphometric and sediment source characterization of the Alaknanda river basin, headwaters of river Ganga, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1649-1671, July.
    16. Hazem Ghassan Abdo, 2020. "Evolving a total-evaluation map of flash flood hazard for hydro-prioritization based on geohydromorphometric parameters and GIS–RS manner in Al-Hussain river basin, Tartous, Syria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 681-703, October.
    17. Ashfaq Ahmad Shah & Jingzhong Ye & Muhammad Abid & Raza Ullah, 2017. "Determinants of flood risk mitigation strategies at household level: a case of Khyber Pakhtunkhwa (KP) province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 415-430, August.
    18. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    19. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    20. Noureen Ali & Akhtar Alam & M. Sultan Bhat & Bilquis Shah, 2022. "Using historical data for developing a hazard and disaster profile of the Kashmir valley for the period 1900–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1609-1646, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:96:y:2019:i:1:d:10.1007_s11069-018-3540-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.