IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00854-3.html
   My bibliography  Save this article

Coronavirus pandemic versus temperature in the context of Indian subcontinent: a preliminary statistical analysis

Author

Listed:
  • Gowhar Meraj

    (Suresh Gyan Vihar University
    Government of Jammu and Kashmir)

  • Majid Farooq

    (Suresh Gyan Vihar University
    Government of Jammu and Kashmir)

  • Suraj Kumar Singh

    (Suresh Gyan Vihar University)

  • Shakil A. Romshoo

    (University of Kashmir)

  • Sudhanshu

    (Suresh Gyan Vihar University)

  • M. S. Nathawat

    (Indira Gandhi National Open University (IGNOU))

  • Shruti Kanga

    (Suresh Gyan Vihar University)

Abstract

The novel coronavirus (COVID-19) has unleashed havoc across different countries and was declared a pandemic by the World Health Organization. Since certain evidences indicate a direct relationship of various viruses with the weather (temperature in particular), the same is being speculated about COVID-19; however, it is still under investigation as the pandemic is advancing the world over. In this study, we tried to analyze the spread of COVID-19 in the Indian subcontinent with respect to the local temperature regimes from March 9, 2020, to May 27, 2020. To establish the relation between COVID-19 and temperature in India, three different ecogeographical regions having significant temperature differences were taken into consideration for the analysis. We observed that except Maharashtra, Rajasthan and Kashmir showed a significantly positive correlation between the number of COVID-19 cases and the temperature during the period of study. The evidences based on the results presented in this research lead us to believe that the increasing temperature is beneficial to the COVID-19 spread, and the cases are going to rise further with the increasing temperature over India. We, therefore, conclude that the existing data, though limited, suggest that the spread of COVID-19 in India is not explained by the variation of temperature alone and is most likely driven by a host of other factors related to epidemiology, socioeconomics and other climatic factors. Based on the results, it is suggested that temperature should not be considered as a yardstick for planning intervention strategies for controlling the COVID-19 pandemic.

Suggested Citation

  • Gowhar Meraj & Majid Farooq & Suraj Kumar Singh & Shakil A. Romshoo & Sudhanshu & M. S. Nathawat & Shruti Kanga, 2021. "Coronavirus pandemic versus temperature in the context of Indian subcontinent: a preliminary statistical analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6524-6534, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00854-3
    DOI: 10.1007/s10668-020-00854-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00854-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00854-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borjas, George J., 2020. "Demographic Determinants of Testing Incidence and COVID-19 Infections in New York City Neighborhoods," IZA Discussion Papers 13115, Institute of Labor Economics (IZA).
    2. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 153-175, May.
    3. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya: reply to comment by Shah 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 1-5, August.
    4. George Livadiotis, 2020. "Statistical analysis of the impact of environmental temperature on the exponential growth rate of cases infected by COVID-19," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-21, May.
    5. Thunström, Linda & Newbold, Stephen C. & Finnoff, David & Ashworth, Madison & Shogren, Jason F., 2020. "The Benefits and Costs of Using Social Distancing to Flatten the Curve for COVID-19," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 11(2), pages 179-195, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    2. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    3. Tusar Kanti Hembram & Sunil Saha, 2020. "Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1241-1268, February.
    4. Ahmed Mustafa & Xiao Wei Zhang & Daniel G Aliaga & Martin Bruwier & Gen Nishida & Benjamin Dewals & Sébastian Erpicum & Pierre Archambeau & Michel Pirotton & Jacques Teller, 2020. "Procedural generation of flood-sensitive urban layouts," Environment and Planning B, , vol. 47(5), pages 889-911, June.
    5. Desirée Tullos & Elizabeth Byron & Gerald Galloway & Jayantha Obeysekera & Om Prakash & Yung-Hsin Sun, 2016. "Review of challenges of and practices for sustainable management of mountain flood hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1763-1797, September.
    6. S. Panwar & V. Agarwal & G. J. Chakrapani, 2017. "Morphometric and sediment source characterization of the Alaknanda river basin, headwaters of river Ganga, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1649-1671, July.
    7. Pallavi Tomar & Suraj Kumar Singh & Shruti Kanga & Gowhar Meraj & Nikola Kranjčić & Bojan Đurin & Amitanshu Pattanaik, 2021. "GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    8. Ngo Thanh Son & Hoang Huong & Nguyen Duc Loc & Tran Trong Phuong, 2022. "Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3091-3109, March.
    9. Hazem Ghassan Abdo, 2020. "Evolving a total-evaluation map of flash flood hazard for hydro-prioritization based on geohydromorphometric parameters and GIS–RS manner in Al-Hussain river basin, Tartous, Syria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 681-703, October.
    10. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    11. Noureen Ali & Akhtar Alam & M. Sultan Bhat & Bilquis Shah, 2022. "Using historical data for developing a hazard and disaster profile of the Kashmir valley for the period 1900–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1609-1646, November.
    12. Ruhhee Tabbussum & Abdul Qayoom Dar, 2021. "Modelling hybrid and backpropagation adaptive neuro-fuzzy inference systems for flood forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 519-566, August.
    13. Ishfaq Hussain Malik, 2022. "Spatial dimension of impact, relief, and rescue of the 2014 flood in Kashmir Valley," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1911-1929, February.
    14. Omvir Singh & Dinesh Kumar, 2019. "Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north-west India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 247-268, March.
    15. Wael M. Elsadek & Mona G. Ibrahim & Wael Elham Mahmod & Shinjiro Kanae, 2019. "Developing an overall assessment map for flood hazard on large area watershed using multi-method approach: case study of Wadi Qena watershed, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 739-767, February.
    16. Bosy A. El-Haddad & Ahmed M. Youssef & Hamid R. Pourghasemi & Biswajeet Pradhan & Abdel-Hamid El-Shater & Mohamed H. El-Khashab, 2021. "Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 83-114, January.
    17. Sachchidanand Singh & Pankaj R. Dhote & Praveen K. Thakur & Arpit Chouksey & S. P. Aggarwal, 2021. "Identification of flash-floods-prone river reaches in Beas river basin using GIS-based multi-criteria technique: validation using field and satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2431-2453, February.
    18. Mao Ouyang & Yuka Ito & Tomochika Tokunaga, 2021. "Effects of geomorphological and geohydrological features on flood hazard in a coastal basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1371-1385, June.
    19. James K. Hammitt, 2020. "Valuing mortality risk in the time of COVID-19," Journal of Risk and Uncertainty, Springer, vol. 61(2), pages 129-154, October.
    20. Hugo S. Gonçalves & Sérgio Moro, 2023. "On the economic impacts of COVID‐19: A text mining literature analysis," Review of Development Economics, Wiley Blackwell, vol. 27(1), pages 375-394, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00854-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.