IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4589-d187866.html
   My bibliography  Save this article

Assessment of the Effects of Climate Change on Evapotranspiration with an Improved Elasticity Method in a Nonhumid Area

Author

Listed:
  • Lei Tian

    (Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
    College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
    Department of Watershed Sciences, Utah State University, Logan, UT 84322, USA)

  • Jiming Jin

    (College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
    Department of Watershed Sciences, Utah State University, Logan, UT 84322, USA)

  • Pute Wu

    (Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
    National Engineering Research Center of Water Saving and Irrigation Technology at Yangling, Yangling 712100, China)

  • Guo-yue Niu

    (Biosphere 2, University of Arizona, Tucson, AZ 85623, USA
    Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA)

Abstract

Climatic elasticity is a crucial metric to assess the hydrological influence of climate change. Based on the Budyko equation, this study performed an analytical derivation of the climatic elasticity of evapotranspiration ( ET ). With this derived elasticity, it is possible to quantitatively separate the impacts of precipitation, air temperature, net radiation, relative humidity, and wind speed on ET in a watershed. This method was applied in the Wuding River Watershed (WRW), located in the center of the Yellow River Watershed of China. The estimated rate of change in ET caused by climatic variables is −10.69 mm/decade, which is close to the rate of change in ET (−8.06 mm/decade) derived from observable data. The accurate estimation with the elasticity method demonstrates its reliability. Our analysis shows that ET in the WRW had a significant downward trend, but the ET ratio in the WRW has increased continually over the past 52 years. Decreasing precipitation is the first-order cause for the reduction of ET , and decreasing net radiation is the secondary cause. Weakening wind speed also contributed to this reduction. In contrast, regional warming led to an increase in ET that partly offset the negative contributions from other climatic variables. Moreover, reforestation can affect the energy budget of a watershed by decreasing albedo, compensating for the negative influence of global dimming. The integrated effect from precipitation and temperature can affect the energy budget of a watershed by causing a large fluctuation in winter albedo.

Suggested Citation

  • Lei Tian & Jiming Jin & Pute Wu & Guo-yue Niu, 2018. "Assessment of the Effects of Climate Change on Evapotranspiration with an Improved Elasticity Method in a Nonhumid Area," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4589-:d:187866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Annina Sorg & Tobias Bolch & Markus Stoffel & Olga Solomina & Martin Beniston, 2012. "Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)," Nature Climate Change, Nature, vol. 2(10), pages 725-731, October.
    2. Thomas Jacob & John Wahr & W. Tad Pfeffer & Sean Swenson, 2012. "Recent contributions of glaciers and ice caps to sea level rise," Nature, Nature, vol. 482(7386), pages 514-518, February.
    3. Valipour, Mohammad & Gholami Sefidkouhi, Mohammad Ali & Raeini−Sarjaz, Mahmoud, 2017. "Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events," Agricultural Water Management, Elsevier, vol. 180(PA), pages 50-60.
    4. Xingang Fan & Zhuguo Ma & Qing Yang & Yunhuan Han & Rezaul Mahmood, 2015. "Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part II: interrelationship from observations," Climatic Change, Springer, vol. 129(3), pages 441-455, April.
    5. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    6. Xingang Fan & Zhuguo Ma & Qing Yang & Yunhuan Han & Rezaul Mahmood & Ziyan Zheng, 2015. "Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part I: observational evidence," Climatic Change, Springer, vol. 129(3), pages 427-440, April.
    7. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Wang & Shuai Zhang & Xueer Chang, 2020. "Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China," Sustainability, MDPI, vol. 12(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinghui Wang & Yu Peng & Min Fan & Zheng Zhang & Qingtong Cui, 2018. "Landscape Patterns Affect Precipitation Differing across Sub-climatic Regions," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    2. Haijun Deng & N. C. Pepin & Qun Liu & Yaning Chen, 2018. "Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016," Climatic Change, Springer, vol. 151(3), pages 379-393, December.
    3. Ngo Thanh Son & Hoang Huong & Nguyen Duc Loc & Tran Trong Phuong, 2022. "Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3091-3109, March.
    4. Chaofan Li & Qifei Han & Geping Luo & Chengyi Zhao & Shoubo Li & Yuangang Wang & Dongsheng Yu, 2018. "Effects of Cropland Conversion and Climate Change on Agrosystem Carbon Balance of China’s Dryland: A Typical Watershed Study," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    5. Yanhua Zhao & De Su & Yang Bao & Wei Yang & Yibo Sun, 2022. "A CLUMondo Model-Based Multi-Scenario Land-Use Change Simulation in the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    6. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    7. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    8. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    9. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    10. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    11. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    12. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    13. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    14. Xueping Zhu & Chi Zhang & Guangtao Fu & Yu Li & Wei Ding, 2017. "Bi-Level Optimization for Determining Operating Strategies for Inter-Basin Water Transfer-Supply Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4415-4432, November.
    15. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    16. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    17. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    18. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    19. Xiaoyan Wang & Tao Yang & Chong-Yu Xu & Lihua Xiong & Pengfei Shi & Zhenya Li, 2020. "The response of runoff components and glacier mass balance to climate change for a glaciated high-mountainous catchment in the Tianshan Mountains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1239-1258, November.
    20. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4589-:d:187866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.