IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4859-d191779.html
   My bibliography  Save this article

Landscape Patterns Affect Precipitation Differing across Sub-climatic Regions

Author

Listed:
  • Qinghui Wang

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

  • Yu Peng

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

  • Min Fan

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
    Grassland Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China)

  • Zheng Zhang

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

  • Qingtong Cui

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

Abstract

Assessment of the impacts of landscape patterns on regional precipitation will help improve ecosystem management and strategies for adaption to global changes. This study aimed to identify the key landscape metrics that affect precipitation across three sub-climatic regions in Inner Mongolia, China, using 266 landscape metrics and daily precipitation data from 38 weather stations for 1995, 2000, 2005, and 2015. Pearson correlation, stepwise linear regression, and Redundancy analysis were used to identify the contributions of landscape patterns to local precipitation in each sub-climatic region. Three-year datasets were used for model development and a one-year data set was used for validation. It was found that the contribution of landscape patterns is higher than that of climatic variations in semi-arid or humid regions. The Core Area Coefficient of Variance (CACoV) of grasslands and Landscape Area (TLA) in non-irrigated croplands have a negative relationship with precipitation in arid regions. Further, the Total Core Area Index (TCAI) of grasslands has a negative correlation with precipitation, while the area proportion (C%LAND) in waters has a significant positive relationship with precipitation in semi-arid regions. Additionally, the Mean Core Area (MCA), Core Area (CA), and Core Area Standard Deviation (CASD) of grasslands and Total Core Area Index (TCAI) of waters are negatively related to precipitation in humid regions. Suitable land use configuration and composition, especially the proportion of grasslands and waters, should be considered in ecosystem management for alleviating the possible harmful effects due to climate change.

Suggested Citation

  • Qinghui Wang & Yu Peng & Min Fan & Zheng Zhang & Qingtong Cui, 2018. "Landscape Patterns Affect Precipitation Differing across Sub-climatic Regions," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4859-:d:191779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schindler, Stefan & von Wehrden, Henrik & Poirazidis, Kostas & Hochachka, Wesley M. & Wrbka, Thomas & Kati, Vassiliki, 2015. "Performance of methods to select landscape metrics for modelling species richness," Ecological Modelling, Elsevier, vol. 295(C), pages 107-112.
    2. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    3. Xingang Fan & Zhuguo Ma & Qing Yang & Yunhuan Han & Rezaul Mahmood, 2015. "Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part II: interrelationship from observations," Climatic Change, Springer, vol. 129(3), pages 441-455, April.
    4. Xingang Fan & Zhuguo Ma & Qing Yang & Yunhuan Han & Rezaul Mahmood & Ziyan Zheng, 2015. "Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part I: observational evidence," Climatic Change, Springer, vol. 129(3), pages 427-440, April.
    5. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    6. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6813), pages 750-750, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoxiao Li & Jing Ma & Yongjun Yang & Huping Hou & Gang-Jun Liu & Fu Chen, 2019. "Short-Term Response of Soil Microbial Community to Field Conversion from Dryland to Paddy under the Land Consolidation Process in North China," Agriculture, MDPI, vol. 9(10), pages 1-17, October.
    2. Lei Tian & Jiming Jin & Pute Wu & Guo-yue Niu, 2018. "Assessment of the Effects of Climate Change on Evapotranspiration with an Improved Elasticity Method in a Nonhumid Area," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    3. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    4. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    5. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    6. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    7. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    8. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    9. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    10. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    11. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    12. Kim, Hyeyoung & House, Lisa A. & KIm, Tae-Kyun, 2016. "Consumer perceptions of climate change and willingness to pay for mandatory implementation of low carbon labels: the case of South Korea," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(4), October.
    13. Guoju, Xiao & Weixiang, Liu & Qiang, Xu & Zhaojun, Sun & Jing, Wang, 2005. "Effects of temperature increase and elevated CO2 concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 74(3), pages 243-255, June.
    14. Sogol Moradian & Farhad Yazdandoost, 2021. "Seasonal meteorological drought projections over Iran using the NMME data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1089-1107, August.
    15. Viola, Flavio M. & Paiva, Susana L.D. & Savi, Marcelo A., 2010. "Analysis of the global warming dynamics from temperature time series," Ecological Modelling, Elsevier, vol. 221(16), pages 1964-1978.
    16. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    17. Marc Kennedy & Clive Anderson & Anthony O'Hagan & Mark Lomas & Ian Woodward & John Paul Gosling & Andreas Heinemeyer, 2008. "Quantifying uncertainty in the biospheric carbon flux for England and Wales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 109-135, January.
    18. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    19. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.
    20. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4859-:d:191779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.