IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v302y2024ics0378377424003093.html
   My bibliography  Save this article

Impact of irrigation systems on water saving and yield of greenhouse and open field cucumber production in Saudi Arabia

Author

Listed:
  • Alomran, Abdulrasoul Mosa
  • Louki, Ibrahim Idriss

Abstract

Water resources worldwide are limited, especially in desert areas like Saudi Arabia. Therefore, the rational and sustainable management of irrigation water supply is an imperative requirement. This research aimed to assess how different irrigation systems, such as partial root-zone drying (PRD) and regulated deficit irrigation (RDI), would affect the growth of cucumber crops. The study specifically focused on comparing the impact of these irrigation techniques when implemented with surface (S) and subsurface (SB) drip irrigation methods. The research was conducted in both controlled environments and open-field settings in central Saudi Arabia. Additionally, the study aimed to promote the adoption of RDI and PRD irrigation systems among Saudi farmers as a means to conserve essential irrigation water resources. The treatments consisted of two groups: the drip irrigation group with a single line (RDI), which includes full irrigation and deficit irrigation, and the group with the (PRD) for the root zone with two lines with the same irrigation ratios as the first group. The productivity of the RDI-S regular drip irrigation treatment was considered 100 % as the control on which the results of all treatments are measured. The results showed that in terms of irrigation technique, the PRD-SB technique had the highest productivity during the winter season in a greenhouse, with an average of 13.8 kg m−2 for all irrigation levels, while the RDI-SB technique had the highest productivity during the summer season, with an average of 16.1 kg m−2. Regarding irrigation level results, the study showed that an irrigation level of 100 % is the highest yield in all irrigation techniques, with a general average of 14.9 kg m−2 for all irrigation techniques during the winter season and 16.4 kg m−2 during the summer. The study showed that irrigation with the PRD-SB system was the most productive in the open field at all irrigation levels, with an average of 7.3 kg m−2. It could be concluded that using PRD and RDI systems for indoor and outdoor cucumber production can save irrigation water in arid regions.

Suggested Citation

  • Alomran, Abdulrasoul Mosa & Louki, Ibrahim Idriss, 2024. "Impact of irrigation systems on water saving and yield of greenhouse and open field cucumber production in Saudi Arabia," Agricultural Water Management, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003093
    DOI: 10.1016/j.agwat.2024.108974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424003093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Abolpour, Behrouz, 2018. "Realistic evaluation of crop water productivity for sustainable farming of wheat in Kamin Region, Fars Province, Iran," Agricultural Water Management, Elsevier, vol. 195(C), pages 94-103.
    3. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    4. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    5. Cabello, M.J. & Castellanos, M.T. & Romojaro, F. & Martnez-Madrid, C. & Ribas, F., 2009. "Yield and quality of melon grown under different irrigation and nitrogen rates," Agricultural Water Management, Elsevier, vol. 96(5), pages 866-874, May.
    6. Marcella Michela Giuliani & Eugenio Nardella & Anna Gagliardi & Giuseppe Gatta, 2017. "Deficit Irrigation and Partial Root-Zone Drying Techniques in Processing Tomato Cultivated under Mediterranean Climate Conditions," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    7. Chiew, F. H. S. & Kamaladasa, N. N. & Malano, H. M. & McMahon, T. A., 1995. "Penman-Monteith, FAO-24 reference crop evapotranspiration and class-A pan data in Australia," Agricultural Water Management, Elsevier, vol. 28(1), pages 9-21, August.
    8. Yuan, Bao-Zhong & Sun, Jie & Kang, Yaohu & Nishiyama, Soichi, 2006. "Response of cucumber to drip irrigation water under a rainshelter," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 145-158, March.
    9. Muhammad Umair & Tabassum Hussain & Hanbing Jiang & Ayesha Ahmad & Jiawei Yao & Yongqing Qi & Yucui Zhang & Leilei Min & Yanjun Shen, 2019. "Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    10. Simsek, Mehmet & Tonkaz, Tahsin & Kacira, Murat & Comlekcioglu, Nuray & Dogan, Zeki, 2005. "The effects of different irrigation regimes on cucumber (Cucumbis sativus L.) yield and yield characteristics under open field conditions," Agricultural Water Management, Elsevier, vol. 73(3), pages 173-191, May.
    11. Bekele, Samson & Tilahun, Ketema, 2007. "Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 148-152, April.
    12. Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
    13. Mahajan, Gulshan & Singh, K.G., 2006. "Response of Greenhouse tomato to irrigation and fertigation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 202-206, July.
    14. Abdulrahman Alhashimi & Arwa Abdulkreem AL-Huqail & Mustafa H. Hashem & Basem M. M. Bakr & Waleed M. E. Fekry & Hosny F. Abdel-Aziz & Ashraf E. Hamdy & Ramadan Eid Abdelraouf & Maher Fathy, 2023. "Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
    15. Ertek, Ahmet & Sensoy, Suat & Gedik, Ibrahim & Kucukyumuk, Cenk, 2006. "Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 159-172, March.
    16. Çakir, Recep & Kanburoglu-Çebi, Ulviye & Altintas, Surreya & Ozdemir, Aylin, 2017. "Irrigation scheduling and water use efficiency of cucumber grown as a spring-summer cycle crop in solar greenhouse," Agricultural Water Management, Elsevier, vol. 180(PA), pages 78-87.
    17. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    18. Mao, Xuesen & Liu, Mengyu & Wang, Xinyuan & Liu, Changming & Hou, Zhimin & Shi, Jinzhi, 2003. "Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain," Agricultural Water Management, Elsevier, vol. 61(3), pages 219-228, July.
    19. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Çakir, Recep & Kanburoglu-Çebi, Ulviye & Altintas, Surreya & Ozdemir, Aylin, 2017. "Irrigation scheduling and water use efficiency of cucumber grown as a spring-summer cycle crop in solar greenhouse," Agricultural Water Management, Elsevier, vol. 180(PA), pages 78-87.
    3. Wang, Aihua & Gallardo, Marisa & Zhao, Wei & Zhang, Zhiping & Miao, Minmin, 2019. "Yield, nitrogen uptake and nitrogen leaching of tunnel greenhouse grown cucumber in a shallow groundwater region," Agricultural Water Management, Elsevier, vol. 217(C), pages 73-80.
    4. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    5. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    6. Abd El-Mageed, Taia A. & Semida, Wael M., 2015. "Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.)," Agricultural Water Management, Elsevier, vol. 159(C), pages 1-10.
    7. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    9. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    10. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    11. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    12. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    14. Yu, Xuemei & Niu, Luqi & Zhang, Yuhui & Xu, Zijian & Zhang, Junwei & Zhang, Shuhui & Li, Jianming, 2024. "Vapour pressure deficit affects crop water productivity, yield, and quality in tomatoes," Agricultural Water Management, Elsevier, vol. 299(C).
    15. Grewal, Harsharn S. & Maheshwari, Basant & Parks, Sophie E., 2011. "Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study," Agricultural Water Management, Elsevier, vol. 98(5), pages 841-846, March.
    16. Soto-García, M. & Martínez-Alvarez, V. & García-Bastida, P.A. & Alcon, F. & Martin-Gorriz, B., 2013. "Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 11-19.
    17. Vita Serman, Facundo & Orgaz, Francisco & Starobinsky, Gabriela & Capraro, Flavio & Fereres, Elias, 2021. "Water productivity and net profit of high-density olive orchards in San Juan, Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
    18. Abdelraouf R. E. & H. G. Ghanem & Najat A. Bukhari & Mohamed El-Zaidy, 2020. "Field and Modeling Study on Manual and Automatic Irrigation Scheduling under Deficit Irrigation of Greenhouse Cucumber," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    19. Lu, Junsheng & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Tiantian, 2021. "Sustainable high grain yield, nitrogen use efficiency and water productivity can be achieved in wheat-maize rotation system by changing irrigation and fertilization strategy," Agricultural Water Management, Elsevier, vol. 258(C).
    20. Abdel-Sattar, Mahmoud & Al-Obeed, Rashid S. & Makhasha, Essa & Mostafa, Laila Y. & Abdelzaher, Rania A.E. & Rihan, Hail Z., 2024. "Improving mangoes' productivity and crop water productivity by 24-epibrassinosteroids and hydrogen peroxide under deficit irrigation," Agricultural Water Management, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.