IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i12d10.1007_s10668-021-01335-x.html
   My bibliography  Save this article

Changes in net anthropogenic nitrogen input in the watershed region of Zhanjiang Bay in south China from 1978 to 2018

Author

Listed:
  • Xin Zhou

    (Guangdong Ocean University)

  • Chunqing Chen

    (Guangdong Ocean University
    Guangdong Ocean University)

  • Fajin Chen

    (Guangdong Ocean University
    Guangdong Ocean University)

  • Zhiguang Song

    (Guangdong Ocean University)

Abstract

Due to the intensive human activities and rapid economic development during the past few decades, the anthropogenic sourced nitrogen (N) input into coastal waters has increased dramatically. In this study, the net anthropogenic nitrogen input (NANI), including the deposition of atmospheric N, the application of N fertiliser, the fixation of biological N, and the net N inputs from food and feed, into the Zhanjiang Bay watershed from 1978 to 2018 were estimated using statistical data, and the driving forces were analysed using the Logarithmic Mean Divisia Index (LMDI) factor decomposition approach. The results show that the NANI dramatically increased from 5269 to 20 639 kg N km−2. The cause of this increase was related to high input from N fertilisers and the net food and feed N input (with average contributions of 56.45% and 41.42%, respectively), which was accompanied by rapid economic development in Zhanjiang Bay. The output from the LMDI illustrates that the cause of the changes in the NANI was a shift in the dietary structure instead of an increase in the human population, which suggests that the impact of human population on the increase in the NANI using simple relational analysis may be overestimated. Remarkably, we found that the N from aquatic protein and animal protein comprised a significant proportion of the total N consumption in this coastal city, which differs from previous studies of inland cities. This is likely due to the fact that aquaculture is significantly developed in this coastal city.

Suggested Citation

  • Xin Zhou & Chunqing Chen & Fajin Chen & Zhiguang Song, 2021. "Changes in net anthropogenic nitrogen input in the watershed region of Zhanjiang Bay in south China from 1978 to 2018," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17201-17219, December.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:12:d:10.1007_s10668-021-01335-x
    DOI: 10.1007/s10668-021-01335-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01335-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01335-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yue Dong & Linyu Xu & Zhifeng Yang & Hanzhong Zheng & Lei Chen, 2020. "Aggravation of reactive nitrogen flow driven by human production and consumption in Guangzhou City China," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Junguo Liu & Hong Yang & H. H. G. Savenije, 2008. "China's move to higher-meat diet hits water security," Nature, Nature, vol. 454(7203), pages 397-397, July.
    3. Xia Cui & Caizhu Huang & Jiapeng Wu & Xiaohan Liu & Yiguo Hong, 2020. "Temporal and spatial variations of net anthropogenic nitrogen inputs (NANI) in the Pearl River Basin of China from 1986 to 2015," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-14, February.
    4. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    5. Zhang, Yan & Lu, Hanjing & Zhang, Xiaolin, 2017. "Analysis of nitrogen metabolism processes and a description of structure characteristics," Ecological Modelling, Elsevier, vol. 357(C), pages 47-54.
    6. Paul G. Falkowski, 1997. "Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean," Nature, Nature, vol. 387(6630), pages 272-275, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Xu & Jiaogen Zhou & Qiuliang Lei & Wenbiao Wu & Guangxiong Mao, 2023. "Effect of Agricultural Structure Adjustment on Spatio-Temporal Patterns of Net Anthropogenic Nitrogen Inputs in the Pearl River Basin from 1990 to 2019," Land, MDPI, vol. 12(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Dongdong & Zhang, Yan & Zhang, Xiaolin & Fath, Brain D., 2023. "Research progress of urban nitrogen cycle and metabolism," Ecological Modelling, Elsevier, vol. 486(C).
    2. Ulrich Hoffmann, 2011. "Assuring Food Security In Developing Countries Under The Challenges Of Climate Change: Key Trade And Development Issues Of A Fundamental Transformation Of Agriculture," UNCTAD Discussion Papers 201, United Nations Conference on Trade and Development.
    3. Walder, Peter & Kantelhardt, Jochen, 2018. "The Environmental Behaviour of Farmers – Capturing the Diversity of Perspectives with a Q Methodological Approach," Ecological Economics, Elsevier, vol. 143(C), pages 55-63.
    4. Obafèmi P Koutchadé & Alain Carpentier & Fabienne Femenia, 2020. "Modeling Corners, Kinks, and Jumps in Crop Acreage Choices: Impacts of the EU Support to Protein Crops," Post-Print hal-04665916, HAL.
    5. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    6. Jie Cai & Xianli Xia & Haibin Chen & Ting Wang & Huili Zhang, 2018. "Decomposition of Fertilizer Use Intensity and Its Environmental Risk in China’s Grain Production Process," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    7. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    8. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    9. Gaurav Chugh & Kadambot H. M. Siddique & Zakaria M. Solaiman, 2021. "Nanobiotechnology for Agriculture: Smart Technology for Combating Nutrient Deficiencies with Nanotoxicity Challenges," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    10. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    11. Vainio, Annukka & Tienhaara, Annika & Haltia, Emmi & Hyvönen, Terho & Pyysiäinen, Jarkko & Pouta, Eija, 2021. "The legitimacy of result-oriented and action-oriented agri-environmental schemes: A comparison of farmers’ and citizens’ perceptions," Land Use Policy, Elsevier, vol. 107(C).
    12. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    13. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    14. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    15. Johnston, Robyn M. & Hoanh, Chu Thai & Lacombe, Guillaume & Noble, Andrew D. & Smakhtin, Vladimir & Suhardiman, Diana & Kam, Suan Pheng & Choo, P. S, 2009. "Scoping study on natural resources and climate change in Southeast Asia with a focus on agriculture. Final report," IWMI Research Reports H042414, International Water Management Institute.
    16. Matthias Buchholz & Oliver Musshoff, 2021. "Tax or green nudge? An experimental analysis of pesticide policies in Germany [A psychological study of the inverse relationship between perceived risk and perceived benefit]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(4), pages 940-982.
    17. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    18. Sarah Rotz & Evan Fraser, 2015. "Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 459-473, September.
    19. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.
    20. Xiaohui Wang & Hao Jia & Xiaolong Wang & Jiaen Zhang & Fu Chen, 2024. "Spatial Distribution of the Cropping Pattern Exerts Greater Influence on the Water Footprint Compared to Diversification in Intensive Farmland Landscapes," Land, MDPI, vol. 13(7), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:12:d:10.1007_s10668-021-01335-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.