IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v45y2015icp193-206.html
   My bibliography  Save this article

An empirical model of fractionally cointegrated daily high and low stock market prices

Author

Listed:
  • Baruník, Jozef
  • Dvořáková, Sylvie

Abstract

This work provides empirical support for the fractional cointegration relationship between daily high and low stock prices, allowing for the non-stationary volatility of stock market returns. The recently formalized fractionally cointegrated vector autoregressive (VAR) model is employed to explain both the cointegration dynamics between daily high and low stock prices and the long memory of their linear combination, i.e., the range. Daily high and low stock prices are of particular interest because they provide valuable information about range-based volatility, which is considered a highly efficient and robust estimator of volatility. We provide a comparison of the Czech PX index with other world market indices: the German Deutscher Aktienindex (DAX), the U.K. Financial Times Stock Exchange (FTSE) 100, the U.S. Standard and Poor's (S&P) 500 and the Japanese Nihon Keizai Shimbun (NIKKEI) 225 during the 2003–2012 period, that is, before and during the financial crisis. We find that the ranges of all of the indices display long memory and are mostly in the non-stationary region, supporting the recent evidence that volatility might not be a stationary process. No common pattern is detected among all of the studied indices, and different behaviors are also observed in the pre-crisis and post-crisis periods. We conclude that the fractionally cointegrated VAR approach allowing for long memory is an interesting alternative for modelling range-based volatility.

Suggested Citation

  • Baruník, Jozef & Dvořáková, Sylvie, 2015. "An empirical model of fractionally cointegrated daily high and low stock market prices," Economic Modelling, Elsevier, vol. 45(C), pages 193-206.
  • Handle: RePEc:eee:ecmode:v:45:y:2015:i:c:p:193-206
    DOI: 10.1016/j.econmod.2014.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999314004647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2014.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    5. Kellard, Neil & Dunis, Christian & Sarantis, Nicholas, 2010. "Foreign exchange, fractional cointegration and the implied-realized volatility relation," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 882-891, April.
    6. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    7. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    8. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    9. Yin-Wong Cheung, 2007. "An empirical model of daily highs and lows," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 1-20.
    10. Yalama, Abdullah & Celik, Sibel, 2013. "Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market," Economic Modelling, Elsevier, vol. 30(C), pages 67-72.
    11. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    12. Fiess, Norbert M & MacDonald, Ronald, 2002. "Towards the fundamentals of technical analysis: analysing the information content of High, Low and Close prices," Economic Modelling, Elsevier, vol. 19(3), pages 353-374, May.
    13. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    14. Degiannakis, Stavros & Livada, Alexandra, 2013. "Realized volatility or price range: Evidence from a discrete simulation of the continuous time diffusion process," Economic Modelling, Elsevier, vol. 30(C), pages 212-216.
    15. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    16. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    17. Shane A. Corwin & Paul Schultz, 2012. "A Simple Way to Estimate Bid‐Ask Spreads from Daily High and Low Prices," Journal of Finance, American Finance Association, vol. 67(2), pages 719-760, April.
    18. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    19. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    20. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    21. John F. Garvey & Liam A. Gallagher, 2012. "The Realised–Implied Volatility Relationship: Recent Empirical Evidence from FTSE‐100 Stocks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(7), pages 639-660, November.
    22. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    23. Granger, Clive W J, 1986. "Developments in the Study of Cointegrated Economic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 213-228, August.
    24. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    25. James G. MacKinnon & Morten Ørregaard Nielsen, 2014. "Numerical Distribution Functions Of Fractional Unit Root And Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 161-171, January.
    26. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    2. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    3. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.
    4. OlaOluwa S. Yaya & Xuan Vinh Vo & Ahamuefula E. Ogbonna & Adeolu O. Adewuyi, 2022. "Modelling cryptocurrency high–low prices using fractional cointegrating VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 489-505, January.
    5. Cipollini, Andrea & Lo Cascio, Iolanda & Muzzioli, Silvia, 2018. "Risk aversion connectedness in five European countries," Economic Modelling, Elsevier, vol. 71(C), pages 68-79.
    6. Stoupos, Nikolaos & Kiohos, Apostolos, 2021. "Energy commodities and advanced stock markets: A post-crisis approach," Resources Policy, Elsevier, vol. 70(C).
    7. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    8. Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
    9. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    10. Monge, Manuel & Romero Rojo, María Fátima & Gil-Alana, Luis Alberiko, 2023. "The impact of geopolitical risk on the behavior of oil prices and freight rates," Energy, Elsevier, vol. 269(C).
    11. Monge, Manuel & Lazcano, Ana & Parada, José Luis, 2023. "Growth vs value investing: Persistence and time trend before and after COVID-19," Research in International Business and Finance, Elsevier, vol. 65(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
    2. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    3. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.
    4. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    5. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    6. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.
    7. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    8. Eduardo Rossi & Paolo Santucci de Magistris, 2013. "A No‐Arbitrage Fractional Cointegration Model for Futures and Spot Daily Ranges," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(1), pages 77-102, January.
    9. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    10. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," CREATES Research Papers 2019-02, Department of Economics and Business Economics, Aarhus University.
    11. Marina Balboa & Paulo M. M. Rodrigues & Antonio Rubia & A. M. Robert Taylor, 2021. "Multivariate fractional integration tests allowing for conditional heteroskedasticity with an application to return volatility and trading volume," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 544-565, August.
    12. Aye, Goodness C. & Carcel, Hector & Gil-Alana, Luis A. & Gupta, Rangan, 2017. "Does gold act as a hedge against inflation in the UK? Evidence from a fractional cointegration approach over 1257 to 2016," Resources Policy, Elsevier, vol. 54(C), pages 53-57.
    13. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    14. Katarzyna Łasak & Carlos Velasco, 2015. "Fractional Cointegration Rank Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 241-254, April.
    15. Chatzikonstanti, Vasiliki & Venetis, Ioannis A., 2015. "Long memory in log-range series: Do structural breaks matter?," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 104-113.
    16. Morten Ørregaard Nielsen & Sergei S. Shibaev, 2015. "Forecasting daily political opinion polls using the fractionally cointegrated VAR model," Working Paper 1340, Economics Department, Queen's University.
    17. Alexander Boca Saravia & Gabriel Rodríguez, 2022. "Presidential approval in Peru: an empirical analysis using a fractionally cointegrated VAR," Economic Change and Restructuring, Springer, vol. 55(3), pages 1973-2010, August.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    19. Gil-Alana, Luis A. & Carcel, Hector, 2020. "A fractional cointegration var analysis of exchange rate dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    20. Quineche Ricardo, 2021. "Consumption, Aggregate Wealth and Expected Stock Returns: An FCVAR Approach," Journal of Time Series Econometrics, De Gruyter, vol. 13(1), pages 21-42, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:45:y:2015:i:c:p:193-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.