Understanding customer regional differences from online opinions: a hierarchical Bayesian approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s10660-020-09420-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
- Xu, Xun & Wang, Xuequn & Li, Yibai & Haghighi, Mohammad, 2017. "Business intelligence in online customer textual reviews: Understanding consumer perceptions and influential factors," International Journal of Information Management, Elsevier, vol. 37(6), pages 673-683.
- Jin Cao & Zhibin Jiang & Kangzhou Wang, 2016. "Customer demand prediction of service-oriented manufacturing incorporating customer satisfaction," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1303-1321, March.
- Udo, Godwin J. & Bagchi, Kallol K. & Kirs, Peeter J., 2010. "An assessment of customers’ e-service quality perception, satisfaction and intention," International Journal of Information Management, Elsevier, vol. 30(6), pages 481-492.
- Jian Jin & Ying Liu & Ping Ji & Hongguang Liu, 2016. "Understanding big consumer opinion data for market-driven product design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(10), pages 3019-3041, May.
- repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
- Dong Wang & Jiexun Li & Kaiquan Xu & Yizhen Wu, 2017. "Sentiment community detection: exploring sentiments and relationships in social networks," Electronic Commerce Research, Springer, vol. 17(1), pages 103-132, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
- Ladi Daodu & Prof. Dr. Amiya Bhaumik, 2024. "Impacts of Innovation and Business Analytics on the Performance of the Service Sector in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 77-91, June.
- C, Deep Prakash & Majumdar, Adrija, 2023. "Predicting sports fans’ engagement with culturally aligned social media content: A language expectancy perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
- Xiao, Yan & Li, Congdong & Thürer, Matthias & Liu, Yide & Qu, Ting, 2022. "User preference mining based on fine-grained sentiment analysis," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
- Villarroel Ordenes, Francisco & Silipo, Rosaria, 2021. "Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications," Journal of Business Research, Elsevier, vol. 137(C), pages 393-410.
- Zhen-Yu Chen & Xin-Li Liu & Li-Ping Yin, 2023. "Data-driven product configuration improvement and product line restructuring with text mining and multitask learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2043-2059, April.
- Jiyeon Hong & Paul R. Hoban, 2022. "Writing More Compelling Creative Appeals: A Deep Learning-Based Approach," Marketing Science, INFORMS, vol. 41(5), pages 941-965, September.
- Bindu K. Nambiar & Kartikeya Bolar, 2023. "Factors influencing customer preference of cardless technology over the card for cash withdrawals: an extended technology acceptance model," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 28(1), pages 58-73, March.
- Uttara Ananthakrishnan & Davide Proserpio & Siddhartha Sharma, 2023. "I Hear You: Does Quality Improve with Customer Voice?," Marketing Science, INFORMS, vol. 42(6), pages 1143-1161, November.
- Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
- Saito, Taiga & Takahashi, Akihiko & Koide, Noriaki & Ichifuji, Yu, 2019. "Application of online booking data to hotel revenue management," International Journal of Information Management, Elsevier, vol. 46(C), pages 37-53.
- Qing Huan & Niu ZhanWen, 2018. "Knowledge management in consultancy involved LPS implementation projects via social media," Electronic Commerce Research, Springer, vol. 18(1), pages 89-107, March.
- Alex Burnap & John R. Hauser & Artem Timoshenko, 2019. "Product Aesthetic Design: A Machine Learning Augmentation," Papers 1907.07786, arXiv.org, revised Nov 2022.
- von Hippel, Eric & Kaulartz, Sandro, 2021. "Next-generation consumer innovation search: Identifying early-stage need-solution pairs on the web," Research Policy, Elsevier, vol. 50(8).
- Oetzel, Sebastian & Graf, Denise, 2023. "Fragen oder Zuhören? Ein Vergleich von Kundenbefragungen und User Generated Content," PraxisWISSEN Marketing: German Journal of Marketing, AfM – Arbeitsgemeinschaft für Marketing, vol. 8(01/2023), pages 91-107.
- Eleanor Kohler & Emmanuel Mogaji & İsmail Erkan, 2023. "Save the Trip to the Store: Sustainable Shopping, Electronic Word of Mouth on Instagram and the Impact on Cosmetic Purchase Intentions," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
- Symeon Symeonidis & Georgios Peikos & Avi Arampatzis, 2022. "Unsupervised consumer intention and sentiment mining from microblogging data as a business intelligence tool," Operational Research, Springer, vol. 22(5), pages 6007-6036, November.
- Davide Proserpio & John R. Hauser & Xiao Liu & Tomomichi Amano & Alex Burnap & Tong Guo & Dokyun (DK) Lee & Randall Lewis & Kanishka Misra & Eric Schwarz & Artem Timoshenko & Lilei Xu & Hema Yoganaras, 2020. "Soul and machine (learning)," Marketing Letters, Springer, vol. 31(4), pages 393-404, December.
- Jitendra Kumar Rout & Kim-Kwang Raymond Choo & Amiya Kumar Dash & Sambit Bakshi & Sanjay Kumar Jena & Karen L. Williams, 2018. "A model for sentiment and emotion analysis of unstructured social media text," Electronic Commerce Research, Springer, vol. 18(1), pages 181-199, March.
- Hsu, Meng-Hsiang & Chang, Chun-Ming & Chuang, Li-Wen, 2015. "Understanding the determinants of online repeat purchase intention and moderating role of habit: The case of online group-buying in Taiwan," International Journal of Information Management, Elsevier, vol. 35(1), pages 45-56.
More about this item
Keywords
Hierarchical Bayesian model; Market regional heterogeneity; Sentiment analysis; Online reviews; Customer satisfaction; Regional distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:22:y:2022:i:2:d:10.1007_s10660-020-09420-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.