IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v37y2017i6p673-683.html
   My bibliography  Save this article

Business intelligence in online customer textual reviews: Understanding consumer perceptions and influential factors

Author

Listed:
  • Xu, Xun
  • Wang, Xuequn
  • Li, Yibai
  • Haghighi, Mohammad

Abstract

With the rapid development of information technology, customers not only shop online—they also post reviews on social media. This user-generated content (UGC) can be useful to understand customers’ shopping experiences and influence future customers’ purchase intentions. Therefore, business intelligence and analytics are increasingly being advocated as a way to analyze customers’ UGC in social media and support firms’ marketing activities. However, because of its open structure, UGC such as customer reviews can be difficult to analyze, and firms find it challenging to harness UGC. To fill this gap, this study aims to examine customer satisfaction and dissatisfaction toward attributes of hotel products and services based on online customer textual reviews. Using a text mining approach, latent semantic analysis (LSA), we identify the key attributes driving customer satisfaction and dissatisfaction toward hotel products and service attributes. Additionally, using a regression approach, we examine the effects of travel purposes, hotel types, star level, and editor recommendations on customers’ perceptions of attributes of hotel products and services. This study bridges customer online textual reviews with customers’ perceptions to help business managers better understand customers’ needs through UGC.

Suggested Citation

  • Xu, Xun & Wang, Xuequn & Li, Yibai & Haghighi, Mohammad, 2017. "Business intelligence in online customer textual reviews: Understanding consumer perceptions and influential factors," International Journal of Information Management, Elsevier, vol. 37(6), pages 673-683.
  • Handle: RePEc:eee:ininma:v:37:y:2017:i:6:p:673-683
    DOI: 10.1016/j.ijinfomgt.2017.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401217301378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2017.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Wu & Zha, Shenghua & Li, Ling, 2013. "Social media competitive analysis and text mining: A case study in the pizza industry," International Journal of Information Management, Elsevier, vol. 33(3), pages 464-472.
    2. Barbara Wixom & Hugh Watson, 2010. "The BI-Based Organization," International Journal of Business Intelligence Research (IJBIR), IGI Global, vol. 1(1), pages 13-28, January.
    3. Yaqoob, Ibrar & Hashem, Ibrahim Abaker Targio & Gani, Abdullah & Mokhtar, Salimah & Ahmed, Ejaz & Anuar, Nor Badrul & Vasilakos, Athanasios V., 2016. "Big data: From beginning to future," International Journal of Information Management, Elsevier, vol. 36(6), pages 1231-1247.
    4. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    5. Habibi, Mohammad Reza & Laroche, Michel & Richard, Marie-Odile, 2014. "Brand communities based in social media: How unique are they? Evidence from two exemplary brand communities," International Journal of Information Management, Elsevier, vol. 34(2), pages 123-132.
    6. Frota Neto, João Quariguasi & Bloemhof, Jacqueline & Corbett, Charles, 2016. "Market prices of remanufactured, used and new items: Evidence from eBay," International Journal of Production Economics, Elsevier, vol. 171(P3), pages 371-380.
    7. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    8. J.M. Espinet & M. Saez & G. Coenders & M. FluviÃ, 2003. "Effect on Prices of the Attributes of Holiday Hotels: A Hedonic Prices Approach," Tourism Economics, , vol. 9(2), pages 165-177, June.
    9. Lipizzi, Carlo & Iandoli, Luca & Ramirez Marquez, José Emmanuel, 2015. "Extracting and evaluating conversational patterns in social media: A socio-semantic analysis of customers’ reactions to the launch of new products using Twitter streams," International Journal of Information Management, Elsevier, vol. 35(4), pages 490-503.
    10. Botti, Laurent & Briec, Walter & Cliquet, Gérard, 2009. "Plural forms versus franchise and company-owned systems: A DEA approach of hotel chain performance," Omega, Elsevier, vol. 37(3), pages 566-578, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Symeon Symeonidis & Georgios Peikos & Avi Arampatzis, 2022. "Unsupervised consumer intention and sentiment mining from microblogging data as a business intelligence tool," Operational Research, Springer, vol. 22(5), pages 6007-6036, November.
    2. Ferreira Ana & Correia Marisol B. & Renda Ana Isabel, 2024. "Systematic Literature Review on the Profile of Tourists in Four- and Five-star Hotels Based on Online Reviews," European Journal of Tourism, Hospitality and Recreation, Sciendo, vol. 14(1), pages 20-34.
    3. Nilashi, Mehrbakhsh & Abumalloh, Rabab Ali & Samad, Sarminah & Alrizq, Mesfer & Alyami, Sultan & Alghamdi, Abdullah, 2023. "Analysis of customers' satisfaction with baby products: The moderating role of brand image," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    4. Martí Bigorra, Anna & Isaksson, Ove & Karlberg, Magnus, 2019. "Aspect-based Kano categorization," International Journal of Information Management, Elsevier, vol. 46(C), pages 163-172.
    5. Saito, Taiga & Takahashi, Akihiko & Koide, Noriaki & Ichifuji, Yu, 2019. "Application of online booking data to hotel revenue management," International Journal of Information Management, Elsevier, vol. 46(C), pages 37-53.
    6. Yang, Bai & Liu, Ying & Liang, Yan & Tang, Min, 2019. "Exploiting user experience from online customer reviews for product design," International Journal of Information Management, Elsevier, vol. 46(C), pages 173-186.
    7. Moro, Sérgio & Ramos, Pedro & Esmerado, Joaquim & Jalali, Seyed Mohammad Jafar, 2019. "Can we trace back hotel online reviews’ characteristics using gamification features?," International Journal of Information Management, Elsevier, vol. 44(C), pages 88-95.
    8. Jaklič, Jurij & Grublješič, Tanja & Popovič, Aleš, 2018. "The role of compatibility in predicting business intelligence and analytics use intentions," International Journal of Information Management, Elsevier, vol. 43(C), pages 305-318.
    9. Jimenez-Marquez, Jose Luis & Gonzalez-Carrasco, Israel & Lopez-Cuadrado, Jose Luis & Ruiz-Mezcua, Belen, 2019. "Towards a big data framework for analyzing social media content," International Journal of Information Management, Elsevier, vol. 44(C), pages 1-12.
    10. Zhao, Lu & Zhang, Mingli & Tu, Jianbo & Li, Jialing & Zhang, Yan, 2023. "Can users embed their user experience in user-generated images? Evidence from JD.com," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    11. Kejia Chen & Jian Jin & Zheng Zhao & Ping Ji, 2022. "Understanding customer regional differences from online opinions: a hierarchical Bayesian approach," Electronic Commerce Research, Springer, vol. 22(2), pages 377-403, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martí Bigorra, Anna & Isaksson, Ove & Karlberg, Magnus, 2019. "Aspect-based Kano categorization," International Journal of Information Management, Elsevier, vol. 46(C), pages 163-172.
    2. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sánchez-Alonso, Salvador, 2023. "Twitter as a predictive system: A systematic literature review," Journal of Business Research, Elsevier, vol. 157(C).
    3. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    4. Acharya, Abhilash & Singh, Sanjay Kumar & Pereira, Vijay & Singh, Poonam, 2018. "Big data, knowledge co-creation and decision making in fashion industry," International Journal of Information Management, Elsevier, vol. 42(C), pages 90-101.
    5. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    6. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    7. Chae, Bongsug (Kevin), 2019. "A General framework for studying the evolution of the digital innovation ecosystem: The case of big data," International Journal of Information Management, Elsevier, vol. 45(C), pages 83-94.
    8. Hassani, Abdeslam & Mosconi, Elaine, 2022. "Social media analytics, competitive intelligence, and dynamic capabilities in manufacturing SMEs," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    9. Braojos-Gomez, Jessica & Benitez-Amado, Jose & Javier Llorens-Montes, F., 2015. "How do small firms learn to develop a social media competence?," International Journal of Information Management, Elsevier, vol. 35(4), pages 443-458.
    10. Gupta, Shivam & Kar, Arpan Kumar & Baabdullah, Abdullah & Al-Khowaiter, Wassan A.A., 2018. "Big data with cognitive computing: A review for the future," International Journal of Information Management, Elsevier, vol. 42(C), pages 78-89.
    11. Quariguasi Frota Neto, João & Dutordoir, Marie, 2020. "Mapping the market for remanufacturing: An application of “Big Data” analytics," International Journal of Production Economics, Elsevier, vol. 230(C).
    12. Ariyaluran Habeeb, Riyaz Ahamed & Nasaruddin, Fariza & Gani, Abdullah & Targio Hashem, Ibrahim Abaker & Ahmed, Ejaz & Imran, Muhammad, 2019. "Real-time big data processing for anomaly detection: A Survey," International Journal of Information Management, Elsevier, vol. 45(C), pages 289-307.
    13. Jimenez-Marquez, Jose Luis & Gonzalez-Carrasco, Israel & Lopez-Cuadrado, Jose Luis & Ruiz-Mezcua, Belen, 2019. "Towards a big data framework for analyzing social media content," International Journal of Information Management, Elsevier, vol. 44(C), pages 1-12.
    14. Tanzeela AQIF & Abdul WAHAB, 2022. "Reshaping The Future Of Retail Marketing Through Big Data: A Review From 2009 To 2022," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 14(3), pages 5-24, September.
    15. Nisar, Tahir M. & Prabhakar, Guru & Patil, Pushp P., 2018. "Sports clubs’ use of social media to increase spectator interest," International Journal of Information Management, Elsevier, vol. 43(C), pages 188-195.
    16. Ragini, J. Rexiline & Anand, P.M. Rubesh & Bhaskar, Vidhyacharan, 2018. "Big data analytics for disaster response and recovery through sentiment analysis," International Journal of Information Management, Elsevier, vol. 42(C), pages 13-24.
    17. Martínez-Rojas, María & Pardo-Ferreira, María del Carmen & Rubio-Romero, Juan Carlos, 2018. "Twitter as a tool for the management and analysis of emergency situations: A systematic literature review," International Journal of Information Management, Elsevier, vol. 43(C), pages 196-208.
    18. Lim, Chiehyeon & Kim, Ki-Hun & Kim, Min-Jun & Heo, Jun-Yeon & Kim, Kwang-Jae & Maglio, Paul P., 2018. "From data to value: A nine-factor framework for data-based value creation in information-intensive services," International Journal of Information Management, Elsevier, vol. 39(C), pages 121-135.
    19. Falana, Gbenga Ayodele & Olusola Esther (PhD) & Dagunduro, Muyiwa Emmanuel, 2023. "Effect of Big Data on Accounting Information Quality in Selected Firms in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(3), pages 789-806, March.
    20. Zelin Zhang & Kejia Yang & Jonathan Z. Zhang & Robert W. Palmatier, 2023. "Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach," Management Science, INFORMS, vol. 69(4), pages 2339-2360, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:37:y:2017:i:6:p:673-683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.