IDEAS home Printed from https://ideas.repec.org/a/eee/joreco/v68y2022ics0969698922001060.html
   My bibliography  Save this article

User preference mining based on fine-grained sentiment analysis

Author

Listed:
  • Xiao, Yan
  • Li, Congdong
  • Thürer, Matthias
  • Liu, Yide
  • Qu, Ting

Abstract

User preference mining is an application of data mining that attracts increasing attention. Although most of the existing user preference mining methods achieved significant performance improvement, the sentiment tendencies of users were seldom considered. This paper proposes fine-grained sentiment analysis for preference mining. The powerful feature representation capabilities of deep neural networks have significantly improved the performance of fine-grained sentiment analysis. But two main challenges remain when using deep neural network models: incomplete user feature extraction and insufficient interaction. In response, a pre-training language model is employed to encode user features to fully explore potential interests of users, a linguistic knowledge model is introduced to assist the encoding, a multi-scale convolution neural network is adopted to capture text features at different scales and fully utilize the text information, and the fine-grained sentiment analysis task is modeled as a sequence labeling problem to explore the sentiment polarity of user evaluation. Experiments on a user review data set are used to verify the new approach. Experimental results of precision, recall rate and F1-value show that the proposed approach performs better, and is more effective than baseline models. For example, the F1-value is increased by 4.27% compared to the best performing baseline model. Findings have important implications for research and practice.

Suggested Citation

  • Xiao, Yan & Li, Congdong & Thürer, Matthias & Liu, Yide & Qu, Ting, 2022. "User preference mining based on fine-grained sentiment analysis," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:joreco:v:68:y:2022:i:c:s0969698922001060
    DOI: 10.1016/j.jretconser.2022.103013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969698922001060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretconser.2022.103013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Changli Zhang & Daniel Zeng & Jiexun Li & Fei‐Yue Wang & Wanli Zuo, 2009. "Sentiment analysis of Chinese documents: From sentence to document level," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(12), pages 2474-2487, December.
    2. Xinxin Ren & Jingjing Cao & Xianhao Xu & Yeming Gong, 2021. "A two-stage model for forecasting consumers' intention to purchase with e-coupons," Post-Print hal-03188221, HAL.
    3. Srivastava, Abhishek & Bala, Pradip Kumar & Kumar, Bipul, 2020. "New perspectives on gray sheep behavior in E-commerce recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).
    4. Ren, Xinxin & Cao, Jingjing & Xu, Xianhao & Gong, Yeming (Yale), 2021. "A two-stage model for forecasting consumers’ intention to purchase with e-coupons," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    5. Jian Jin & Ying Liu & Ping Ji & Hongguang Liu, 2016. "Understanding big consumer opinion data for market-driven product design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(10), pages 3019-3041, May.
    6. Lei Zhang & Xuening Chu & Deyi Xue, 2019. "Identification of the to-be-improved product features based on online reviews for product redesign," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2464-2479, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Zhebin & Li, Qing & Zeng, Xianyi, 2023. "Social media user behavior analysis applied to the fashion and apparel industry in the big data era," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    2. Park, Jeongeun & Yang, Donguk & Kim, Ha Young, 2023. "Text mining-based four-step framework for smart speaker product improvement and sales planning," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    3. Liu, Yang & Shi, Jiale & Huang, Fei & Hou, Jingrui & Zhang, Chengzhi, 2024. "Unveiling consumer preferences in automotive reviews through aspect-based opinion generation," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    4. Zhao, Lu & Zhang, Mingli & Tu, Jianbo & Li, Jialing & Zhang, Yan, 2023. "Can users embed their user experience in user-generated images? Evidence from JD.com," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    5. Li, Hengyun & Gao, Huicai & Song, Haiyan, 2023. "Tourism forecasting with granular sentiment analysis," Annals of Tourism Research, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen-Yu Chen & Xin-Li Liu & Li-Ping Yin, 2023. "Data-driven product configuration improvement and product line restructuring with text mining and multitask learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2043-2059, April.
    2. Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
    3. Ladhari, Riadh & Hudon, Tristan & Massa, Elodie & Souiden, Nizar, 2022. "The determinants of Women's redemption of geo-targeted m-coupons," Journal of Retailing and Consumer Services, Elsevier, vol. 66(C).
    4. Zhang, Yue & Hu, Xiaojian & Yao, Gang & Xu, Liangcheng, 2024. "Coupon promotion and inventory strategies of a supplier considering an e-commerce platform's omnichannel coupons," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    5. Liu, Yang & Shi, Jiale & Huang, Fei & Hou, Jingrui & Zhang, Chengzhi, 2024. "Unveiling consumer preferences in automotive reviews through aspect-based opinion generation," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    6. Chao He & Zhongkai Li & Dengzhuo Liu & Guangyu Zou & Shuai Wang, 2023. "Improving the functional performances for product family by mining online reviews," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2809-2824, August.
    7. Huang, Shupeng & Potter, Andrew & Eyers, Daniel & Li, Qinyun, 2021. "The influence of online review adoption on the profitability of capacitated supply chains," Omega, Elsevier, vol. 105(C).
    8. Hu, Li & Zhang, Mengwei & Wen, Xin, 2023. "Optimal distribution strategy of coupons on e-commerce platforms: Sufficient or scarce?," International Journal of Production Economics, Elsevier, vol. 266(C).
    9. Jindong Qin & Pan Zheng & Xiaojun Wang, 2024. "Product Redesign and Innovation Based on Online Reviews: A Multistage Combined Search Method," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 742-765, May.
    10. Park, Jinhee & Ahn, Hyeongjin & Kim, Dongjae & Park, Eunil, 2024. "GNN-IR: Examining graph neural networks for influencer recommendations in social media marketing," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    11. Hallikainen, Heli & Luongo, Milena & Dhir, Amandeep & Laukkanen, Tommi, 2022. "Consequences of personalized product recommendations and price promotions in online grocery shopping," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    12. Yakubu, Hanan & Kwong, C.K., 2021. "Forecasting the importance of product attributes using online customer reviews and Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    13. Urbinati, Andrea & Bogers, Marcel & Chiesa, Vittorio & Frattini, Federico, 2019. "Creating and capturing value from Big Data: A multiple-case study analysis of provider companies," Technovation, Elsevier, vol. 84, pages 21-36.
    14. Chinchanachokchai, Sydney & Thontirawong, Pipat & Chinchanachokchai, Punjaporn, 2021. "A tale of two recommender systems: The moderating role of consumer expertise on artificial intelligence based product recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    15. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    16. Molaie, Mir Majid & Lee, Wonjae, 2022. "Economic corollaries of personalized recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    17. Hanyang Luo & Wugang Song & Wanhua Zhou & Xudong Lin & Sumin Yu, 2023. "An Analysis Framework to Reveal Automobile Users’ Preferences from Online User-Generated Content," Sustainability, MDPI, vol. 15(18), pages 1-29, September.
    18. Yao Jiao & Yu Yang & Hongshan Zhang, 2019. "An integration model for generating and selecting product configuration plans," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1291-1302, March.
    19. Farzadnia, Siavash & Raeesi Vanani, Iman, 2022. "Identification of opinion trends using sentiment analysis of airlines passengers' reviews," Journal of Air Transport Management, Elsevier, vol. 103(C).
    20. Showimy Aldossari & Umi Asma’ Mokhtar & Ahmad Tarmizi Abdul Ghani, 2023. "Factor Influencing the Adoption of Big Data Analytics: A Systematic Literature and Experts Review," SAGE Open, , vol. 13(4), pages 21582440231, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:68:y:2022:i:c:s0969698922001060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.