IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v17y2017i1d10.1007_s10660-016-9233-8.html
   My bibliography  Save this article

Sentiment community detection: exploring sentiments and relationships in social networks

Author

Listed:
  • Dong Wang

    (Ocean University of China)

  • Jiexun Li

    (Western Washington University)

  • Kaiquan Xu

    (Nanjing University)

  • Yizhen Wu

    (Nanjing University)

Abstract

Social networking sites (SNS), which allow users to express opinions on products/services, have become an important channel and platform for enterprises to acquire and trace users’ sentiments in order to design appropriate business strategies and online marketing campaigns. However, with the large number of users and complex user relationships on SNS, effectively capturing these sentiments for business decision support is still a big challenge. In this study we introduce the concept of “Sentiment Community,” a group of users who are closely connected and highly consistent in their sentiments about one product/service. Discovering such sentiment communities would be very valuable to enterprises for customer segmentation and target marketing. Taking into account both connections and sentiments, we propose two methods to discover sentiment communities by adopting the optimization models of semi-definite programming (SDP). Our experimental evaluations demonstrated great performances for the proposed methods. This study opens the doors to effectively explore users’ sentiments on SNS for business decision making.

Suggested Citation

  • Dong Wang & Jiexun Li & Kaiquan Xu & Yizhen Wu, 2017. "Sentiment community detection: exploring sentiments and relationships in social networks," Electronic Commerce Research, Springer, vol. 17(1), pages 103-132, March.
  • Handle: RePEc:spr:elcore:v:17:y:2017:i:1:d:10.1007_s10660-016-9233-8
    DOI: 10.1007/s10660-016-9233-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-016-9233-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-016-9233-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chrysanthos Dellarocas, 2006. "Strategic Manipulation of Internet Opinion Forums: Implications for Consumers and Firms," Management Science, INFORMS, vol. 52(10), pages 1577-1593, October.
    2. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    3. G. Agarwal & D. Kempe, 2008. "Modularity-maximizing graph communities via mathematical programming," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(3), pages 409-418, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Huan & Niu ZhanWen, 2018. "Knowledge management in consultancy involved LPS implementation projects via social media," Electronic Commerce Research, Springer, vol. 18(1), pages 89-107, March.
    2. Yanjie Xu & Tao Ren & Shixiang Sun, 2022. "Community Detection Based on Node Influence and Similarity of Nodes," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    3. Jitendra Kumar Rout & Kim-Kwang Raymond Choo & Amiya Kumar Dash & Sambit Bakshi & Sanjay Kumar Jena & Karen L. Williams, 2018. "A model for sentiment and emotion analysis of unstructured social media text," Electronic Commerce Research, Springer, vol. 18(1), pages 181-199, March.
    4. Joseph, Simmi Marina & Citraro, Salvatore & Morini, Virginia & Rossetti, Giulio & Stella, Massimo, 2023. "Cognitive network neighborhoods quantify feelings expressed in suicide notes and Reddit mental health communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    5. Kejia Chen & Jian Jin & Zheng Zhao & Ping Ji, 2022. "Understanding customer regional differences from online opinions: a hierarchical Bayesian approach," Electronic Commerce Research, Springer, vol. 22(2), pages 377-403, June.
    6. Yi Yu & Jaeseung Baek & Ali Tosyali & Myong K. Jeong, 2024. "Robust asymmetric non-negative matrix factorization for clustering nodes in directed networks," Annals of Operations Research, Springer, vol. 341(1), pages 245-265, October.
    7. Swarup Chattopadhyay & Tanmay Basu & Asit K. Das & Kuntal Ghosh & Late C. A. Murthy, 2021. "Towards effective discovery of natural communities in complex networks and implications in e-commerce," Electronic Commerce Research, Springer, vol. 21(4), pages 917-954, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    2. Theodoros Lappas & Gaurav Sabnis & Georgios Valkanas, 2016. "The Impact of Fake Reviews on Online Visibility: A Vulnerability Assessment of the Hotel Industry," Information Systems Research, INFORMS, vol. 27(4), pages 940-961, December.
    3. Dipankar Das, 2022. "Measurement of Trustworthiness of the Online Reviews," Papers 2210.00815, arXiv.org, revised Nov 2023.
    4. Martin Gellerstedt & T. Arvemo, 2019. "The impact of word of mouth when booking a hotel: could a good friend’s opinion outweigh the online majority?," Information Technology & Tourism, Springer, vol. 21(3), pages 289-311, September.
    5. Xitong Li, 2018. "Impact of Average Rating on Social Media Endorsement: The Moderating Role of Rating Dispersion and Discount Threshold," Information Systems Research, INFORMS, vol. 29(3), pages 739-754, September.
    6. Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
    7. Yabing Jiang & Hong Guo, 2015. "Design of Consumer Review Systems and Product Pricing," Information Systems Research, INFORMS, vol. 26(4), pages 714-730, December.
    8. Dongpu Fu & Yili Hong & Kanliang Wang & Weiguo Fan, 2018. "Effects of membership tier on user content generation behaviors: evidence from online reviews," Electronic Commerce Research, Springer, vol. 18(3), pages 457-483, September.
    9. Zhen Li & Fangzhou Li & Jing Xiao & Zhi Yang, 2020. "Topic Features in Negative Customer Reviews: Evidence Based on Text Data Mining," The Review of Socionetwork Strategies, Springer, vol. 14(1), pages 19-40, April.
    10. Tao Lu & May Yuan & Chong (Alex) Wang & Xiaoquan (Michael) Zhang, 2022. "Histogram Distortion Bias in Consumer Choices," Management Science, INFORMS, vol. 68(12), pages 8963-8978, December.
    11. Xueming Luo & Jie Zhang & Wenjing Duan, 2013. "Social Media and Firm Equity Value," Information Systems Research, INFORMS, vol. 24(1), pages 146-163, March.
    12. Bin Gu & Jaehong Park & Prabhudev Konana, 2012. "Research Note ---The Impact of External Word-of-Mouth Sources on Retailer Sales of High-Involvement Products," Information Systems Research, INFORMS, vol. 23(1), pages 182-196, March.
    13. Liting Li & Haichao Zheng & Dongyu Chen & Bin Zhu, 2024. "Whose reviews are most valuable for predicting the default risk of peer-to-peer lending platforms? Evidence from China," Electronic Commerce Research, Springer, vol. 24(3), pages 1619-1658, September.
    14. Chong (Alex) Wang & Xiaoquan (Michael) Zhang & Il-Horn Hann, 2018. "Socially Nudged: A Quasi-Experimental Study of Friends’ Social Influence in Online Product Ratings," Information Systems Research, INFORMS, vol. 29(3), pages 641-655, September.
    15. Yabing Jiang & Hong Guo, 2012. "Design of Consumer Review Systems and Product Pricing," Working Papers 12-10, NET Institute.
    16. Angela Aerry Choi & Daegon Cho & Dobin Yim & Jae Yun Moon & Wonseok Oh, 2019. "When Seeing Helps Believing: The Interactive Effects of Previews and Reviews on E-Book Purchases," Information Systems Research, INFORMS, vol. 30(4), pages 1164-1183, December.
    17. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    18. Panagiotis Adamopoulos & Anindya Ghose & Vilma Todri, 2018. "The Impact of User Personality Traits on Word of Mouth: Text-Mining Social Media Platforms," Information Systems Research, INFORMS, vol. 29(3), pages 612-640, September.
    19. Travis Dyer & Eunjee Kim, 2021. "Anonymous Equity Research," Journal of Accounting Research, Wiley Blackwell, vol. 59(2), pages 575-611, May.
    20. Hailiang Chen & Prabuddha De & Yu Jeffrey Hu, 2015. "IT-Enabled Broadcasting in Social Media: An Empirical Study of Artists’ Activities and Music Sales," Information Systems Research, INFORMS, vol. 26(3), pages 513-531, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:17:y:2017:i:1:d:10.1007_s10660-016-9233-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.