IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v21y2021i4d10.1007_s10660-020-09401-8.html
   My bibliography  Save this article

Economical user-generated content (UGC) marketing for online stores based on a fine-grained joint model of the consumer purchase decision process

Author

Listed:
  • S. G. Li

    (Shanghai University)

  • Y. Q. Zhang

    (Shanghai University)

  • Z. X. Yu

    (East China University of Science and Technology)

  • F. Liu

    (Shanghai University)

Abstract

User-generated content (UGC) is influential in reducing customer perceived risk and determining online store sales. E-sellers spend huge costs and efforts to improve UGC for it serves as a convenient and persuasive alternative for marketing and advertising purposes. Considering that consumers may set lower and/or upper limits (i.e., psychological thresholds) in which the good is expected to be, and purchase decisions are considered as a multi-stage decision process, yet models in previous research cannot uncover this decision-making process. Therefore, exploring the impact of UGC at each decision-making stage and detecting the psychological thresholds on various aspects of UGC (i.e., the fine-grained effects of UGC) contribute to optimizing the UGC with the best cost to boost sales. To this end, a fine-grained joint two-stage decision model, zero-inflated negative binomial regression (ZINB-P) model is proposed to support economical UGC marketing. Specifically, we compile a factors system composed of various types of aggregate-level statistics of UGC, which can impact risk perception. Afterward, change point analysis is used to find multi-level consumer psychological thresholds on UGC factors and consumers’ risk perception model is constructed to measure purchasing probabilities in the first decision-making stage. On the basis of consumers’ risk perception model, the ZINB-P model is built to fully capture the fine-grained effects of UGC factors on each stage of the consumer purchase decision. It integrates two stages of consumer decision: the consumer risk perception and non-compensatory choice in the first stage, and the second compensatory stage. A genetic algorithm is constructed to jointly estimate the parameters in ZINB-P model. Finally, an experiment on a kind of fresh produce from Taobao.com evidences the precision of our model. We demonstrate how our model can provide with economical UGC marketing strategies using a decision support table, in which some scenarios are identified. E-sellers can use this table to find the scenarios they are located in and identify the critical UGC factors that impede the sales in each scenario, and thus economical UGC marketing strategies can be obtained by improving these critical UGC factors.

Suggested Citation

  • S. G. Li & Y. Q. Zhang & Z. X. Yu & F. Liu, 2021. "Economical user-generated content (UGC) marketing for online stores based on a fine-grained joint model of the consumer purchase decision process," Electronic Commerce Research, Springer, vol. 21(4), pages 1083-1112, December.
  • Handle: RePEc:spr:elcore:v:21:y:2021:i:4:d:10.1007_s10660-020-09401-8
    DOI: 10.1007/s10660-020-09401-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-020-09401-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-020-09401-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Macdonald, Emma K. & Sharp, Byron M., 2000. "Brand Awareness Effects on Consumer Decision Making for a Common, Repeat Purchase Product:: A Replication," Journal of Business Research, Elsevier, vol. 48(1), pages 5-15, April.
    2. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    3. Stuart Dillon & John Buchanan & Kholoud Al-Otaibi, 2014. "Perceived Risk and Online Shopping Intention: A Study Across Gender and Product Type," International Journal of E-Business Research (IJEBR), IGI Global, vol. 10(4), pages 17-38, October.
    4. Nelson, Philip, 1974. "Advertising as Information," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 729-754, July/Aug..
    5. Gobinda Roy & Biplab Datta & Rituparna Basu, 2017. "Effect of eWOM Valence on Online Retail Sales," Global Business Review, International Management Institute, vol. 18(1), pages 198-209, February.
    6. Ashish Sen & S. Srivastava, 1975. "On tests for detecting change in mean when variance is unknown," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 479-486, December.
    7. Peter S. Fader & Russell S. Winer, 2012. "Introduction to the Special Issue on the Emergence and Impact of User-Generated Content," Marketing Science, INFORMS, vol. 31(3), pages 369-371, May.
    8. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    9. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    10. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    11. Garbarino, Ellen & Strahilevitz, Michal, 2004. "Gender differences in the perceived risk of buying online and the effects of receiving a site recommendation," Journal of Business Research, Elsevier, vol. 57(7), pages 768-775, July.
    12. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    13. Drakopoulos, S A, 1992. "Psychological Thresholds, Demand and Price Rigidity," The Manchester School of Economic & Social Studies, University of Manchester, vol. 60(2), pages 152-168, June.
    14. Jianan Wu & Arvind Rangaswamy, 2003. "A Fuzzy Set Model of Search and Consideration with an Application to an Online Market," Marketing Science, INFORMS, vol. 22(3), pages 411-434, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isaac Kofi Mensah & Guohua Zeng & Chuanyong Luo, 2023. "Determinants of Social Commerce Purchase and Recommendation Intentions Within the Context of Swift Guanxi Among Chinese College Students," SAGE Open, , vol. 13(2), pages 21582440231, June.
    2. Vincenzo Basile & Amélia Brandão & Mariana Ferreira, 2024. "Does user-generated content influence value co-creation in the context of luxury fashion brand communities? Matching inclusivity and exclusivity," Italian Journal of Marketing, Springer, vol. 2024(4), pages 419-444, December.
    3. Shimi Naurin Ahmad & Michel Laroche, 2023. "Extracting marketing information from product reviews: a comparative study of latent semantic analysis and probabilistic latent semantic analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 662-676, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kordrostami, Elika & Rahmani, Vahid, 2020. "Investigating conflicting online review information:evidence from Amazon.com," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    2. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    3. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    4. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    5. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    6. Boegershausen, Johannes & Datta, Hannes & Borah, Abhishek & Stephen, Andrew, 2022. "Fields of Gold: Web Scraping and APIs for Impactful Marketing Insights," Other publications TiSEM 5f1ed70a-48c3-422c-bc10-0, Tilburg University, School of Economics and Management.
    7. Lifang Peng & Qinyu Liao & Xiaorong Wang & Xuanfang He, 2016. "Factors affecting female user information adoption: an empirical investigation on fashion shopping guide websites," Electronic Commerce Research, Springer, vol. 16(2), pages 145-169, June.
    8. Arijit Bhattacharya & Manjari Srivastava, 2020. "A Framework of Online Customer Experience: An Indian Perspective," Global Business Review, International Management Institute, vol. 21(3), pages 800-817, June.
    9. Takumi Kato, 2022. "Rating valence versus rating distribution: perceived helpfulness of word of mouth in e-commerce," SN Business & Economics, Springer, vol. 2(11), pages 1-24, November.
    10. Yang, Wenjuan & Zhang, Jiantong & Yan, Hong, 2022. "Promotions of online reviews from a channel perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Warut Khern-am-nuai & Hossein Ghasemkhani & Dandan Qiao & Karthik Kannan, 2024. "The Impact of Online Q&As on Product Sales: The Case of Amazon Answer," Information Systems Research, INFORMS, vol. 35(2), pages 747-765, June.
    12. Uttara M. Ananthakrishnan & Beibei Li & Michael D. Smith, 2020. "A Tangled Web: Should Online Review Portals Display Fraudulent Reviews?," Information Systems Research, INFORMS, vol. 31(3), pages 950-971, September.
    13. Xin (Shane) Wang & Feng Mai & Roger H. L. Chiang, 2014. "Database Submission ---Market Dynamics and User-Generated Content About Tablet Computers," Marketing Science, INFORMS, vol. 33(3), pages 449-458, May.
    14. Scott Motyka & Dhruv Grewal & Elizabeth Aguirre & Dominik Mahr & Ko Ruyter & Martin Wetzels, 2018. "The emotional review–reward effect: how do reviews increase impulsivity?," Journal of the Academy of Marketing Science, Springer, vol. 46(6), pages 1032-1051, November.
    15. Choudhary, Vidyanand & Currim, Imran & Dewan, Sanjeev & Jeliazkov, Ivan & Mintz, Ofer & Turner, John, 2017. "Evaluation Set Size and Purchase: Evidence from a Product Search Engine," Journal of Interactive Marketing, Elsevier, vol. 37(C), pages 16-31.
    16. Molina-Castillo, Francisco-Jose & Lopez-Nicolas, Carolina & Soto-Acosta, Pedro, 2012. "Interaction effects of media and message on perceived complexity, risk and trust of innovative products," European Management Journal, Elsevier, vol. 30(6), pages 577-587.
    17. Amanda S. King & John T. King & Michael Reksulak, 2017. "Signaling for access to high-demand markets: evidence from the US motion picture industry," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 41(4), pages 441-465, November.
    18. Langan, Ryan & Besharat, Ali & Varki, Sajeev, 2017. "The effect of review valence and variance on product evaluations: An examination of intrinsic and extrinsic cues," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 414-429.
    19. Nima Y. Jalali & Purushottam Papatla, 2016. "The palette that stands out: Color compositions of online curated visual UGC that attracts higher consumer interaction," Quantitative Marketing and Economics (QME), Springer, vol. 14(4), pages 353-384, December.
    20. Briggs, Elten & Janakiraman, Narayan, 2017. "Slogan recall effects on marketplace behaviors: The roles of external search and brand assessment," Journal of Business Research, Elsevier, vol. 80(C), pages 98-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:21:y:2021:i:4:d:10.1007_s10660-020-09401-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.