IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i3d10.1007_s10898-017-0560-7.html
   My bibliography  Save this article

Feasibility pump for aircraft deconfliction with speed regulation

Author

Listed:
  • Sonia Cafieri

    (Université de Toulouse, ENAC)

  • Claudia D’Ambrosio

    (École Polytechnique)

Abstract

We propose Feasibility Pump heuristics for the crucial problem of aircraft conflict avoidance arising in air traffic management. This problem can be modeled as a mixed integer nonlinear optimization problem, whose solution can be very computationally demanding. Feasibility Pump is an iterative algorithm that, at each iteration, solves alternatively two easier subproblems represented by relaxations of the original problem, minimizing the distance between their solutions. We propose in this paper specific formulations for the subproblems to be handled, tailored to the problem at hand. Numerical results show that, on the considered test problems, good-quality, in some cases optimal, feasible solutions are always obtained.

Suggested Citation

  • Sonia Cafieri & Claudia D’Ambrosio, 2018. "Feasibility pump for aircraft deconfliction with speed regulation," Journal of Global Optimization, Springer, vol. 71(3), pages 501-515, July.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:3:d:10.1007_s10898-017-0560-7
    DOI: 10.1007/s10898-017-0560-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0560-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0560-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.
    2. David Rey & Christophe Rapine & Rémy Fondacci & Nour-Eddin El Faouzi, 2016. "Subliminal Speed Control in Air Traffic Management: Optimization and Simulation," Transportation Science, INFORMS, vol. 50(1), pages 240-262, February.
    3. Sonia Cafieri & Nicolas Durand, 2014. "Aircraft deconfliction with speed regulation: new models from mixed-integer optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 613-629, April.
    4. Pierre Bonami & João Gonçalves, 2012. "Heuristics for convex mixed integer nonlinear programs," Computational Optimization and Applications, Springer, vol. 51(2), pages 729-747, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Cerulli & Claudia D’Ambrosio & Leo Liberti & Mercedes Pelegrín, 2021. "Detecting and solving aircraft conflicts using bilevel programming," Journal of Global Optimization, Springer, vol. 81(2), pages 529-557, October.
    2. Fernando Dias & David Rey, 2024. "Aircraft conflict resolution with trajectory recovery using mixed-integer programming," Journal of Global Optimization, Springer, vol. 90(4), pages 1031-1067, December.
    3. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.
    2. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.
    3. Fernando Dias & David Rey, 2024. "Aircraft conflict resolution with trajectory recovery using mixed-integer programming," Journal of Global Optimization, Springer, vol. 90(4), pages 1031-1067, December.
    4. Mercedes Pelegrín & Martina Cerulli, 2023. "Aircraft Conflict Resolution: A Benchmark Generator," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 274-285, March.
    5. Dias, Fernando H.C. & Hijazi, Hassan & Rey, David, 2022. "Disjunctive linear separation conditions and mixed-integer formulations for aircraft conflict resolution," European Journal of Operational Research, Elsevier, vol. 296(2), pages 520-538.
    6. Martina Cerulli & Claudia D’Ambrosio & Leo Liberti & Mercedes Pelegrín, 2021. "Detecting and solving aircraft conflicts using bilevel programming," Journal of Global Optimization, Springer, vol. 81(2), pages 529-557, October.
    7. Chunyi Wang & Fengzhang Luo & Zheng Jiao & Xiaolei Zhang & Zhipeng Lu & Yanshuo Wang & Ren Zhao & Yang Yang, 2022. "An Enhanced Second-Order Cone Programming-Based Evaluation Method on Maximum Hosting Capacity of Solar Energy in Distribution Systems with Integrated Energy," Energies, MDPI, vol. 15(23), pages 1-19, November.
    8. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    9. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    10. Christoph Neumann & Oliver Stein & Nathan Sudermann-Merx, 2020. "Granularity in Nonlinear Mixed-Integer Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 433-465, February.
    11. Christoph Neumann & Oliver Stein & Nathan Sudermann-Merx, 2019. "A feasible rounding approach for mixed-integer optimization problems," Computational Optimization and Applications, Springer, vol. 72(2), pages 309-337, March.
    12. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    13. Meenarli Sharma & Prashant Palkar & Ashutosh Mahajan, 2022. "Linearization and parallelization schemes for convex mixed-integer nonlinear optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 423-478, March.
    14. Justin A. Sirignano & Gerry Tsoukalas & Kay Giesecke, 2016. "Large-Scale Loan Portfolio Selection," Operations Research, INFORMS, vol. 64(6), pages 1239-1255, December.
    15. Md Saiful Islam & Md Sarowar Morshed & Md. Noor-E-Alam, 2022. "A Computational Framework for Solving Nonlinear Binary Optimization Problems in Robust Causal Inference," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3023-3041, November.
    16. Francisco Trespalacios & Ignacio E. Grossmann, 2016. "Cutting Plane Algorithm for Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 209-222, May.
    17. Timo Berthold & Andrea Lodi & Domenico Salvagnin, 2019. "Ten years of feasibility pump, and counting," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(1), pages 1-14, March.
    18. M. Li & L. Vicente, 2013. "Inexact solution of NLP subproblems in MINLP," Journal of Global Optimization, Springer, vol. 55(4), pages 877-899, April.
    19. Saïd Hanafi & Raca Todosijević, 2017. "Mathematical programming based heuristics for the 0–1 MIP: a survey," Journal of Heuristics, Springer, vol. 23(4), pages 165-206, August.
    20. Antonio Frangioni & Fabio Furini & Claudio Gentile, 2016. "Approximated perspective relaxations: a project and lift approach," Computational Optimization and Applications, Springer, vol. 63(3), pages 705-735, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:3:d:10.1007_s10898-017-0560-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.