IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v80y2021i1d10.1007_s10589-021-00300-8.html
   My bibliography  Save this article

Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem

Author

Listed:
  • Jingyong Tang

    (Xinyang Normal University)

  • Jinchuan Zhou

    (Shandong University of Technology)

Abstract

In this paper we consider the weighted nonlinear complementarity problem (denoted by wNCP) which contains a wide class of optimization problems. We introduce a family of new weighted complementarity functions and show that it is continuously differentiable everywhere and has several favorable properties. Based on this function, we reformulate the wNCP as a smooth nonlinear equation and propose a nonmonotone Levenberg–Marquardt type method to solve it. We show that the proposed method is well-defined and it is globally convergent without any additional condition. Moreover, we prove that the whole iteration sequence converges to a solution of the wNCP locally superlinearly or quadratically under the nonsingularity condition. In addition, we establish the local quadratic convergence of the proposed method under the local error bound condition. Some numerical results are also reported.

Suggested Citation

  • Jingyong Tang & Jinchuan Zhou, 2021. "Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem," Computational Optimization and Applications, Springer, vol. 80(1), pages 213-244, September.
  • Handle: RePEc:spr:coopap:v:80:y:2021:i:1:d:10.1007_s10589-021-00300-8
    DOI: 10.1007/s10589-021-00300-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00300-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00300-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soodabeh Asadi & Zsolt Darvay & Goran Lesaja & Nezam Mahdavi-Amiri & Florian Potra, 2020. "A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 864-878, September.
    2. Z.H. Huang & J. Han & Z. Chen, 2003. "Predictor-Corrector Smoothing Newton Method, Based on a New Smoothing Function, for Solving the Nonlinear Complementarity Problem with a P 0 Function," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 39-68, April.
    3. Y. Q. Bai & G. Lesaja & C. Roos & G. Q. Wang & M. El Ghami, 2008. "A Class of Large-Update and Small-Update Primal-Dual Interior-Point Algorithms for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 341-359, September.
    4. Changfeng Ma, 2010. "A new smoothing and regularization Newton method for P 0 -NCP," Journal of Global Optimization, Springer, vol. 48(2), pages 241-261, October.
    5. Jingyong Tang & Hongchao Zhang, 2021. "A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 679-715, June.
    6. Florian A. Potra, 2016. "Sufficient weighted complementarity problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 467-488, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyong Tang & Jinchuan Zhou & Hongchao Zhang, 2023. "An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 641-665, February.
    2. Jingyong Tang & Jinchuan Zhou & Zhongfeng Sun, 2023. "A derivative-free line search technique for Broyden-like method with applications to NCP, wLCP and SI," Annals of Operations Research, Springer, vol. 321(1), pages 541-564, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyong Tang & Hongchao Zhang, 2021. "A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 679-715, June.
    2. Tang, Jingyong & Zhou, Jinchuan & Fang, Liang, 2015. "A non-monotone regularization Newton method for the second-order cone complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 743-756.
    3. Jingyong Tang & Jinchuan Zhou & Hongchao Zhang, 2023. "An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 641-665, February.
    4. Xiaoni Chi & Guoqiang Wang, 2021. "A Full-Newton Step Infeasible Interior-Point Method for the Special Weighted Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 108-129, July.
    5. Jingyong Tang & Jinchuan Zhou & Zhongfeng Sun, 2023. "A derivative-free line search technique for Broyden-like method with applications to NCP, wLCP and SI," Annals of Operations Research, Springer, vol. 321(1), pages 541-564, February.
    6. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    7. Zsolt Darvay & Petra Renáta Takács, 2018. "Large-step interior-point algorithm for linear optimization based on a new wide neighbourhood," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 551-563, September.
    8. Liqun Qi & Zheng-Hai Huang, 2019. "Tensor Complementarity Problems—Part II: Solution Methods," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 365-385, November.
    9. Pin-Bo Chen & Gui-Hua Lin & Xide Zhu & Fusheng Bai, 2021. "Smoothing Newton method for nonsmooth second-order cone complementarity problems with application to electric power markets," Journal of Global Optimization, Springer, vol. 80(3), pages 635-659, July.
    10. Manuel V. C. Vieira, 2012. "The Accuracy of Interior-Point Methods Based on Kernel Functions," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 637-649, November.
    11. Marianna E.-Nagy & Anita Varga, 2023. "A new long-step interior point algorithm for linear programming based on the algebraic equivalent transformation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 691-711, September.
    12. G. Q. Wang & Y. Q. Bai, 2012. "A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 739-772, March.
    13. Xiaoni Chi & M. Seetharama Gowda & Jiyuan Tao, 2019. "The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra," Journal of Global Optimization, Springer, vol. 73(1), pages 153-169, January.
    14. Yongsheng Rao & Jianwei Su & Behrouz Kheirfam, 2024. "A Full-Newton Step Interior-Point Method for Weighted Quadratic Programming Based on the Algebraic Equivalent Transformation," Mathematics, MDPI, vol. 12(7), pages 1-11, April.
    15. Bilian Chen & Changfeng Ma, 2011. "A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P 0 -function," Journal of Global Optimization, Springer, vol. 51(3), pages 473-495, November.
    16. G. Lesaja & C. Roos, 2011. "Kernel-Based Interior-Point Methods for Monotone Linear Complementarity Problems over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 444-474, September.
    17. M. Seetharama Gowda, 2019. "Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras," Journal of Global Optimization, Springer, vol. 74(2), pages 285-295, June.
    18. Zhang, Xu & Peng, Zheng, 2020. "A modulus-based nonmonotone line search method for nonlinear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    19. Soodabeh Asadi & Zsolt Darvay & Goran Lesaja & Nezam Mahdavi-Amiri & Florian Potra, 2020. "A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 864-878, September.
    20. Changfeng Ma, 2010. "A new smoothing and regularization Newton method for P 0 -NCP," Journal of Global Optimization, Springer, vol. 48(2), pages 241-261, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:80:y:2021:i:1:d:10.1007_s10589-021-00300-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.