IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i1d10.1007_s10957-022-02139-3.html
   My bibliography  Save this article

Complexity Analysis of a Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems

Author

Listed:
  • Behrouz Kheirfam

    (Azarbaijan Shahid Madani University)

Abstract

In this paper, we present a full-Newton step interior-point method for solving monotone Weighted Linear Complementarity Problem. We use the technique of algebraic equivalent transformation (AET) of the nonlinear equation of the system which defines the central path. The AET is based on the square root function which plays an important role in computing the new search directions. The algorithm uses only full-Newton steps at each iteration, and hence, line searches are no longer needed. We prove that the algorithm has a quadratic rate of convergence to the target point on the central path. The obtained iteration bound coincides with the best known iteration bound for these types of problems.

Suggested Citation

  • Behrouz Kheirfam, 2024. "Complexity Analysis of a Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 133-145, July.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-022-02139-3
    DOI: 10.1007/s10957-022-02139-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02139-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02139-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florian A. Potra, 2016. "Sufficient weighted complementarity problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 467-488, June.
    2. Soodabeh Asadi & Zsolt Darvay & Goran Lesaja & Nezam Mahdavi-Amiri & Florian Potra, 2020. "A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 864-878, September.
    3. H. Mansouri & M. Pirhaji, 2013. "A Polynomial Interior-Point Algorithm for Monotone Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 451-461, May.
    4. G. Q. Wang & Y. Q. Bai, 2012. "A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 966-985, September.
    5. Behrouz Kheirfam, 2013. "A new infeasible interior-point method based on Darvay’s technique for symmetric optimization," Annals of Operations Research, Springer, vol. 211(1), pages 209-224, December.
    6. Jingyong Tang & Jinchuan Zhou, 2021. "Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem," Computational Optimization and Applications, Springer, vol. 80(1), pages 213-244, September.
    7. Xiaoni Chi & Guoqiang Wang, 2021. "A Full-Newton Step Infeasible Interior-Point Method for the Special Weighted Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 108-129, July.
    8. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyong Tang & Jinchuan Zhou & Hongchao Zhang, 2023. "An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 641-665, February.
    2. Xiaoni Chi & Guoqiang Wang & Goran Lesaja, 2024. "Kernel-Based Full-Newton Step Feasible Interior-Point Algorithm for $$P_{*}(\kappa )$$ P ∗ ( κ ) -Weighted Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 108-132, July.
    3. Jingyong Tang & Hongchao Zhang, 2021. "A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 679-715, June.
    4. Jingyong Tang & Jinchuan Zhou, 2021. "Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem," Computational Optimization and Applications, Springer, vol. 80(1), pages 213-244, September.
    5. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.
    6. Xiaoni Chi & Guoqiang Wang, 2021. "A Full-Newton Step Infeasible Interior-Point Method for the Special Weighted Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 108-129, July.
    7. Xiaoni Chi & M. Seetharama Gowda & Jiyuan Tao, 2019. "The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra," Journal of Global Optimization, Springer, vol. 73(1), pages 153-169, January.
    8. Petra Renáta Rigó & Zsolt Darvay, 2018. "Infeasible interior-point method for symmetric optimization using a positive-asymptotic barrier," Computational Optimization and Applications, Springer, vol. 71(2), pages 483-508, November.
    9. M. Seetharama Gowda, 2019. "Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras," Journal of Global Optimization, Springer, vol. 74(2), pages 285-295, June.
    10. Jingyong Tang & Jinchuan Zhou & Zhongfeng Sun, 2023. "A derivative-free line search technique for Broyden-like method with applications to NCP, wLCP and SI," Annals of Operations Research, Springer, vol. 321(1), pages 541-564, February.
    11. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    12. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Discussion Paper 2005-5, Tilburg University, Center for Economic Research.
    13. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    14. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    15. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    16. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    17. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    18. E. Demidenko, 2008. "Criteria for Unconstrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 375-395, March.
    19. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    20. Tibor Illés & Petra Renáta Rigó & Roland Török, 2024. "Unified Approach of Interior-Point Algorithms for $$P_*(\kappa )$$ P ∗ ( κ ) -LCPs Using a New Class of Algebraically Equivalent Transformations," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 27-49, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-022-02139-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.