IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v138y2008i3d10.1007_s10957-008-9389-z.html
   My bibliography  Save this article

A Class of Large-Update and Small-Update Primal-Dual Interior-Point Algorithms for Linear Optimization

Author

Listed:
  • Y. Q. Bai

    (Shanghai University)

  • G. Lesaja

    (Georgia Southern University)

  • C. Roos

    (Delft University of Technology)

  • G. Q. Wang

    (Shanghai University)

  • M. El Ghami

    (University of Bergen)

Abstract

In this paper we present a class of polynomial primal-dual interior-point algorithms for linear optimization based on a new class of kernel functions. This class is fairly general and includes the classical logarithmic function, the prototype self-regular function, and non-self-regular kernel functions as special cases. The analysis of the algorithms in the paper follows the same line of arguments as in Bai et al. (SIAM J. Optim. 15:101–128, [2004]), where a variety of non-self-regular kernel functions were considered including the ones with linear and quadratic growth terms. However, the important case when the growth term is between linear and quadratic was not considered. The goal of this paper is to introduce such class of kernel functions and to show that the interior-point methods based on these functions have favorable complexity results. They match the currently best known iteration bounds for the prototype self-regular function with quadratic growth term, the simple non-self-regular function with linear growth term, and the classical logarithmic kernel function. In order to achieve these complexity results, several new arguments had to be used.

Suggested Citation

  • Y. Q. Bai & G. Lesaja & C. Roos & G. Q. Wang & M. El Ghami, 2008. "A Class of Large-Update and Small-Update Primal-Dual Interior-Point Algorithms for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 341-359, September.
  • Handle: RePEc:spr:joptap:v:138:y:2008:i:3:d:10.1007_s10957-008-9389-z
    DOI: 10.1007/s10957-008-9389-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9389-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9389-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianna E.-Nagy & Anita Varga, 2023. "A new long-step interior point algorithm for linear programming based on the algebraic equivalent transformation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 691-711, September.
    2. G. Q. Wang & Y. Q. Bai, 2012. "A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 739-772, March.
    3. Zsolt Darvay & Petra Renáta Takács, 2018. "Large-step interior-point algorithm for linear optimization based on a new wide neighbourhood," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 551-563, September.
    4. Jingyong Tang & Jinchuan Zhou, 2021. "Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem," Computational Optimization and Applications, Springer, vol. 80(1), pages 213-244, September.
    5. G. Lesaja & C. Roos, 2011. "Kernel-Based Interior-Point Methods for Monotone Linear Complementarity Problems over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 444-474, September.
    6. Manuel V. C. Vieira, 2012. "The Accuracy of Interior-Point Methods Based on Kernel Functions," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 637-649, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:138:y:2008:i:3:d:10.1007_s10957-008-9389-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.