IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v321y2023i1d10.1007_s10479-022-04796-z.html
   My bibliography  Save this article

A derivative-free line search technique for Broyden-like method with applications to NCP, wLCP and SI

Author

Listed:
  • Jingyong Tang

    (Xinyang Normal University)

  • Jinchuan Zhou

    (Shandong University of Technology)

  • Zhongfeng Sun

    (Shandong University of Technology)

Abstract

We propose a new derivative-free line search technique which contains the classical Li-Fukushima derivative-free line search [Optim. Methods Softw. 13 (3), 181–201, 2000] as a special case. The new line search can enable us to choose a larger step size at each iteration and reduce the number of function evaluations at each step. Based on the new line search, we prove that Broyden-like method for solving the nonlinear equation is globally and locally superlinearly convergent under appropriate assumptions. Moreover, we present some nonlinear equations arising from nonlinear complementarity problems (NCP), weighted linear complementarity problems (wLCP) and system of inequalities (SI). Numerical results show that Broyden-like method based on the new line search has better numerical performance than that based on Li-Fukushima line search.

Suggested Citation

  • Jingyong Tang & Jinchuan Zhou & Zhongfeng Sun, 2023. "A derivative-free line search technique for Broyden-like method with applications to NCP, wLCP and SI," Annals of Operations Research, Springer, vol. 321(1), pages 541-564, February.
  • Handle: RePEc:spr:annopr:v:321:y:2023:i:1:d:10.1007_s10479-022-04796-z
    DOI: 10.1007/s10479-022-04796-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04796-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04796-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Seetharama Gowda, 2019. "Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras," Journal of Global Optimization, Springer, vol. 74(2), pages 285-295, June.
    2. Jingyong Tang & Hongchao Zhang, 2021. "A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 679-715, June.
    3. L. Grippo & F. Rinaldi, 2015. "A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximations," Computational Optimization and Applications, Springer, vol. 60(1), pages 1-33, January.
    4. Jingyong Tang & Jinchuan Zhou, 2021. "A smoothing quasi-Newton method for solving general second-order cone complementarity problems," Journal of Global Optimization, Springer, vol. 80(2), pages 415-438, June.
    5. Soodabeh Asadi & Zsolt Darvay & Goran Lesaja & Nezam Mahdavi-Amiri & Florian Potra, 2020. "A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 864-878, September.
    6. Xiaoni Chi & M. Seetharama Gowda & Jiyuan Tao, 2019. "The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra," Journal of Global Optimization, Springer, vol. 73(1), pages 153-169, January.
    7. Bilian Chen & Changfeng Ma, 2011. "A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P 0 -function," Journal of Global Optimization, Springer, vol. 51(3), pages 473-495, November.
    8. Jingyong Tang & Jinchuan Zhou, 2021. "Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem," Computational Optimization and Applications, Springer, vol. 80(1), pages 213-244, September.
    9. Dong-Hui Li & Masao Fukushima, 2001. "Globally Convergent Broyden-Like Methods for Semismooth Equations and Applications to VIP, NCP and MCP," Annals of Operations Research, Springer, vol. 103(1), pages 71-97, March.
    10. D. H. Li & N. Yamashita & M. Fukushima, 2001. "Nonsmooth Equation Based BFGS Method for Solving KKT Systems in Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 123-167, April.
    11. Jingyong Tang & Jinchuan Zhou, 2020. "Smoothing inexact Newton method based on a new derivative-free nonmonotone line search for the NCP over circular cones," Annals of Operations Research, Springer, vol. 295(2), pages 787-808, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyong Tang & Jinchuan Zhou & Hongchao Zhang, 2023. "An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 641-665, February.
    2. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    3. Jingyong Tang & Jinchuan Zhou, 2021. "A smoothing quasi-Newton method for solving general second-order cone complementarity problems," Journal of Global Optimization, Springer, vol. 80(2), pages 415-438, June.
    4. Jingyong Tang & Jinchuan Zhou, 2021. "Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem," Computational Optimization and Applications, Springer, vol. 80(1), pages 213-244, September.
    5. Xiaoni Chi & Guoqiang Wang, 2021. "A Full-Newton Step Infeasible Interior-Point Method for the Special Weighted Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 108-129, July.
    6. Jingyong Tang & Hongchao Zhang, 2021. "A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 679-715, June.
    7. Long, Qiang & Wu, Changzhi & Wang, Xiangyu, 2015. "A system of nonsmooth equations solver based upon subgradient method," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 284-299.
    8. Biao Qu & Changyu Wang & Naihua Xiu, 2017. "Analysis on Newton projection method for the split feasibility problem," Computational Optimization and Applications, Springer, vol. 67(1), pages 175-199, May.
    9. Punit Kumar Yadav & Palpandi Karuppaiah, 2023. "Generalizations of $$R_0$$ R 0 and $$\textbf{SSM}$$ SSM Properties for Extended Horizontal Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 392-414, October.
    10. Changyu Wang & Qian Liu & Cheng Ma, 2013. "Smoothing SQP algorithm for semismooth equations with box constraints," Computational Optimization and Applications, Springer, vol. 55(2), pages 399-425, June.
    11. Milagros Loreto & Hugo Aponte & Debora Cores & Marcos Raydan, 2017. "Nonsmooth spectral gradient methods for unconstrained optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 529-553, December.
    12. Bilian Chen & Changfeng Ma, 2011. "A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P 0 -function," Journal of Global Optimization, Springer, vol. 51(3), pages 473-495, November.
    13. Xiaona Fan & Qinglun Yan, 2018. "A New Proof for Global Convergence of a Smoothing Homotopy Method for the Nonlinear Complementarity Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-13, August.
    14. Jiao Li & Yu-Fei Yang & Bo Yu, 2012. "A nonmonotone PSB algorithm for solving unconstrained optimization," Computational Optimization and Applications, Springer, vol. 52(1), pages 267-280, May.
    15. Masoud Ahookhosh & Arnold Neumaier, 2018. "Solving structured nonsmooth convex optimization with complexity $$\mathcal {O}(\varepsilon ^{-1/2})$$ O ( ε - 1 / 2 )," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 110-145, April.
    16. László Pál, 2017. "Empirical study of the improved UNIRANDI local search method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 929-952, December.
    17. M. Seetharama Gowda, 2019. "Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras," Journal of Global Optimization, Springer, vol. 74(2), pages 285-295, June.
    18. Xuebin Wang & Changfeng Ma & Meiyan Li, 2011. "A globally and superlinearly convergent quasi-Newton method for general box constrained variational inequalities without smoothing approximation," Journal of Global Optimization, Springer, vol. 50(4), pages 675-694, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:321:y:2023:i:1:d:10.1007_s10479-022-04796-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.