IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v26y2018i3d10.1007_s10100-018-0524-0.html
   My bibliography  Save this article

Large-step interior-point algorithm for linear optimization based on a new wide neighbourhood

Author

Listed:
  • Zsolt Darvay

    (Babeş-Bolyai University)

  • Petra Renáta Takács

    (Babeş-Bolyai University
    Budapest University of Technology and Economics)

Abstract

The interior-point algorithms can be classified in multiple ways. One of these takes into consideration the length of the step. In this way, we can speak about large-step and short-step methods, that work in different neighbourhoods of the central path. The large-step algorithms work in a wide neighbourhood, while the short-step ones determine the new iterates that are in a smaller neighbourhood. In spite of the fact that the large-step algorithms are more efficient in practice, the theoretical complexity of the short-step ones is generally better. Ai and Zhang introduced a large-step interior-point method for linear complementarity problems using a wide neighbourhood of the central path, which has the same complexity as the best short-step methods. We present a new wide neighbourhood of the central path. We prove that the obtained large-step primal–dual interior-point method for linear programming has the same complexity as the best short-step algorithms.

Suggested Citation

  • Zsolt Darvay & Petra Renáta Takács, 2018. "Large-step interior-point algorithm for linear optimization based on a new wide neighbourhood," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 551-563, September.
  • Handle: RePEc:spr:cejnor:v:26:y:2018:i:3:d:10.1007_s10100-018-0524-0
    DOI: 10.1007/s10100-018-0524-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-018-0524-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-018-0524-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ximei Yang & Hongwei Liu & Yinkui Zhang, 2015. "A New Strategy in the Complexity Analysis of an Infeasible-Interior-Point Method for Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 572-587, August.
    2. Y. Q. Bai & G. Lesaja & C. Roos & G. Q. Wang & M. El Ghami, 2008. "A Class of Large-Update and Small-Update Primal-Dual Interior-Point Algorithms for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 341-359, September.
    3. T. Illés & M. Nagy & T. Terlaky, 2009. "EP Theorem for Dual Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 233-238, February.
    4. Illes, Tibor & Nagy, Marianna, 2007. "A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1097-1111, September.
    5. Péter Tar & Bálint Stágel & István Maros, 2017. "Parallel search paths for the simplex algorithm," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 967-984, December.
    6. Hongwei Liu & Ximei Yang & Changhe Liu, 2013. "A New Wide Neighborhood Primal–Dual Infeasible-Interior-Point Method for Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 796-815, September.
    7. Potra, Florian A., 2002. "The Mizuno-Todd-Ye algorithm in a larger neighborhood of the central path," European Journal of Operational Research, Elsevier, vol. 143(2), pages 257-267, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botond Bertók & Tibor Csendes & Tibor Jordán, 2019. "Editorial," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 325-327, June.
    2. Marianna E.-Nagy & Anita Varga, 2023. "A new long-step interior point algorithm for linear programming based on the algebraic equivalent transformation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 691-711, September.
    3. Marianna E.-Nagy & Anita Varga, 2023. "A new long-step interior point algorithm for linear programming based on the algebraic equivalent transformation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 691-711, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.
    2. Manuel V. C. Vieira, 2012. "The Accuracy of Interior-Point Methods Based on Kernel Functions," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 637-649, November.
    3. Illes, Tibor & Nagy, Marianna, 2007. "A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1097-1111, September.
    4. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    5. Héctor Ramírez & David Sossa, 2017. "On the Central Paths in Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 649-668, February.
    6. Tibor Csendes & Csanád Imreh & József Temesi, 2017. "Editorial," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 739-741, December.
    7. Ximei Yang & Hongwei Liu & Yinkui Zhang, 2015. "A New Strategy in the Complexity Analysis of an Infeasible-Interior-Point Method for Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 572-587, August.
    8. Jingyong Tang & Jinchuan Zhou, 2021. "Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem," Computational Optimization and Applications, Springer, vol. 80(1), pages 213-244, September.
    9. Sabir, Zulqurnain & Wahab, Hafiz Abdul & Umar, Muhammad & Erdoğan, Fevzi, 2019. "Stochastic numerical approach for solving second order nonlinear singular functional differential equation," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    10. Marianna E.-Nagy & Anita Varga, 2023. "A new long-step interior point algorithm for linear programming based on the algebraic equivalent transformation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 691-711, September.
    11. G. Q. Wang & Y. Q. Bai, 2012. "A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 739-772, March.
    12. Zs. Darvay & T. Illés & B. Kheirfam & P. R. Rigó, 2020. "A corrector–predictor interior-point method with new search direction for linear optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1123-1140, September.
    13. Soodabeh Asadi & Hossein Mansouri & Zsolt Darvay & Maryam Zangiabadi & Nezam Mahdavi-Amiri, 2019. "Large-Neighborhood Infeasible Predictor–Corrector Algorithm for Horizontal Linear Complementarity Problems over Cartesian Product of Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 811-829, March.
    14. Petra Renáta Rigó & Zsolt Darvay, 2018. "Infeasible interior-point method for symmetric optimization using a positive-asymptotic barrier," Computational Optimization and Applications, Springer, vol. 71(2), pages 483-508, November.
    15. M. Sayadi Shahraki & H. Mansouri & M. Zangiabadi, 2017. "Two wide neighborhood interior-point methods for symmetric cone optimization," Computational Optimization and Applications, Springer, vol. 68(1), pages 29-55, September.
    16. Salahi, Maziar & Terlaky, Tamas, 2007. "Postponing the choice of the barrier parameter in Mehrotra-type predictor-corrector algorithms," European Journal of Operational Research, Elsevier, vol. 182(2), pages 502-513, October.
    17. G. Lesaja & C. Roos, 2011. "Kernel-Based Interior-Point Methods for Monotone Linear Complementarity Problems over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 444-474, September.
    18. Marianna E.-Nagy & Anita Varga, 2023. "A new long-step interior point algorithm for linear programming based on the algebraic equivalent transformation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 691-711, September.
    19. Tibor Illés & Marianna Nagy & Tamás Terlaky, 2010. "A polynomial path-following interior point algorithm for general linear complementarity problems," Journal of Global Optimization, Springer, vol. 47(3), pages 329-342, July.
    20. G. Wang & C. Yu & K. Teo, 2014. "A full-Newton step feasible interior-point algorithm for $$P_*(\kappa )$$ P ∗ ( κ ) -linear complementarity problems," Journal of Global Optimization, Springer, vol. 59(1), pages 81-99, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:26:y:2018:i:3:d:10.1007_s10100-018-0524-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.