IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v271y2015icp743-756.html
   My bibliography  Save this article

A non-monotone regularization Newton method for the second-order cone complementarity problem

Author

Listed:
  • Tang, Jingyong
  • Zhou, Jinchuan
  • Fang, Liang

Abstract

Based on the smoothing Newton method and the Tikhonov regularization method, we construct a regularization Newton method for the second-order cone complementarity problem. The method uses a non-monotone line search scheme which contains the usual monotone line search as a special case. By using the theory of Euclidean Jordan algebras, we prove that the proposed method is globally and locally quadratically convergent under suitable assumptions. Some numerical results are reported which indicate the effectiveness of the method.

Suggested Citation

  • Tang, Jingyong & Zhou, Jinchuan & Fang, Liang, 2015. "A non-monotone regularization Newton method for the second-order cone complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 743-756.
  • Handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:743-756
    DOI: 10.1016/j.amc.2015.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315012357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng-Hai Huang & Tie Ni, 2010. "Smoothing algorithms for complementarity problems over symmetric cones," Computational Optimization and Applications, Springer, vol. 45(3), pages 557-579, April.
    2. Z.H. Huang & J. Han & Z. Chen, 2003. "Predictor-Corrector Smoothing Newton Method, Based on a New Smoothing Function, for Solving the Nonlinear Complementarity Problem with a P 0 Function," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 39-68, April.
    3. Yasushi Narushima & Nobuko Sagara & Hideho Ogasawara, 2011. "A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 79-101, April.
    4. Changfeng Ma, 2010. "A new smoothing and regularization Newton method for P 0 -NCP," Journal of Global Optimization, Springer, vol. 48(2), pages 241-261, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyong Tang & Hongchao Zhang, 2021. "A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 679-715, June.
    2. Jingyong Tang & Jinchuan Zhou, 2021. "Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem," Computational Optimization and Applications, Springer, vol. 80(1), pages 213-244, September.
    3. Liqun Qi & Zheng-Hai Huang, 2019. "Tensor Complementarity Problems—Part II: Solution Methods," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 365-385, November.
    4. Pin-Bo Chen & Gui-Hua Lin & Xide Zhu & Fusheng Bai, 2021. "Smoothing Newton method for nonsmooth second-order cone complementarity problems with application to electric power markets," Journal of Global Optimization, Springer, vol. 80(3), pages 635-659, July.
    5. Jingyong Tang & Jinchuan Zhou, 2020. "Smoothing inexact Newton method based on a new derivative-free nonmonotone line search for the NCP over circular cones," Annals of Operations Research, Springer, vol. 295(2), pages 787-808, December.
    6. Jingyong Tang & Jinchuan Zhou & Hongchao Zhang, 2023. "An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 641-665, February.
    7. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    8. Tatsuya Hirano & Yasushi Narushima, 2019. "Robust Supply Chain Network Equilibrium Model," Transportation Science, INFORMS, vol. 53(4), pages 1196-1212, July.
    9. Li, Yuan-Min & Wei, Deyun, 2015. "A generalized smoothing Newton method for the symmetric cone complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 335-345.
    10. Xiangjing Liu & Sanyang Liu, 2020. "A new nonmonotone smoothing Newton method for the symmetric cone complementarity problem with the Cartesian $$P_0$$ P 0 -property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 229-247, October.
    11. Nan Lu & Zheng-Hai Huang, 2014. "A Smoothing Newton Algorithm for a Class of Non-monotonic Symmetric Cone Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 446-464, May.
    12. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    13. Bilian Chen & Changfeng Ma, 2011. "A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P 0 -function," Journal of Global Optimization, Springer, vol. 51(3), pages 473-495, November.
    14. Zijun Hao & Chieu Thanh Nguyen & Jein-Shan Chen, 2022. "An approximate lower order penalty approach for solving second-order cone linear complementarity problems," Journal of Global Optimization, Springer, vol. 83(4), pages 671-697, August.
    15. Miao, Xin-He & Yang, Jiantao & Hu, Shenglong, 2015. "A generalized Newton method for absolute value equations associated with circular cones," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 155-168.
    16. Zhang, Xu & Peng, Zheng, 2020. "A modulus-based nonmonotone line search method for nonlinear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    17. Changfeng Ma, 2010. "A new smoothing and regularization Newton method for P 0 -NCP," Journal of Global Optimization, Springer, vol. 48(2), pages 241-261, October.
    18. Xuebin Wang & Changfeng Ma & Meiyan Li, 2011. "A globally and superlinearly convergent quasi-Newton method for general box constrained variational inequalities without smoothing approximation," Journal of Global Optimization, Springer, vol. 50(4), pages 675-694, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:743-756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.