IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v79y2021i1d10.1007_s10589-021-00267-6.html
   My bibliography  Save this article

Generating set search using simplex gradients for bound-constrained black-box optimization

Author

Listed:
  • Sander Dedoncker

    (KU Leuven
    Flanders Make)

  • Wim Desmet

    (KU Leuven
    Flanders Make)

  • Frank Naets

    (KU Leuven
    Flanders Make)

Abstract

The optimization problems arising in modern engineering practice are increasingly simulation-based, characterized by extreme types of nonsmoothness, the inaccessibility of derivatives, and high computational expense. While generating set searches (GSS) generally offer a satisfying level of robustness and converge to stationary points, the convergence rates may be slow. In order to accelerate the solution process without sacrificing robustness, we introduce (simplex) gradient-informed generating set search (GIGS) methods for solving bound-constrained minimization problems. These algorithms use simplex gradients, acquired over several iterations, as guidance for adapting the search stencil to the local topography of the objective function. GIGS is shown to inherit first-order convergence properties of GSS and to possess a natural tendency for avoiding saddle points. Numerical experiments are performed on an academic set of smooth, nonsmooth and noisy test problems, as well as a realistic engineering case study. The results demonstrate that including simplex gradient information enables computational cost savings over non-adaptive GSS methods.

Suggested Citation

  • Sander Dedoncker & Wim Desmet & Frank Naets, 2021. "Generating set search using simplex gradients for bound-constrained black-box optimization," Computational Optimization and Applications, Springer, vol. 79(1), pages 35-65, May.
  • Handle: RePEc:spr:coopap:v:79:y:2021:i:1:d:10.1007_s10589-021-00267-6
    DOI: 10.1007/s10589-021-00267-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00267-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00267-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Custódio & H. Rocha & L. Vicente, 2010. "Incorporating minimum Frobenius norm models in direct search," Computational Optimization and Applications, Springer, vol. 46(2), pages 265-278, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    2. He, Fang & Yin, Yafeng & Chen, Zhibin & Zhou, Jing, 2015. "Pricing of parking games with atomic players," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 1-12.
    3. Y. Diouane & S. Gratton & L. Vicente, 2015. "Globally convergent evolution strategies for constrained optimization," Computational Optimization and Applications, Springer, vol. 62(2), pages 323-346, November.
    4. Charles Audet & Michael Kokkolaras & Sébastien Le Digabel & Bastien Talgorn, 2018. "Order-based error for managing ensembles of surrogates in mesh adaptive direct search," Journal of Global Optimization, Springer, vol. 70(3), pages 645-675, March.
    5. Árpád Bűrmen & Jernej Olenšek & Tadej Tuma, 2015. "Mesh adaptive direct search with second directional derivative-based Hessian update," Computational Optimization and Applications, Springer, vol. 62(3), pages 693-715, December.
    6. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    7. Eric Newby & M. Ali, 2015. "A trust-region-based derivative free algorithm for mixed integer programming," Computational Optimization and Applications, Springer, vol. 60(1), pages 199-229, January.
    8. C. P. Brás & A. L. Custódio, 2020. "On the use of polynomial models in multiobjective directional direct search," Computational Optimization and Applications, Springer, vol. 77(3), pages 897-918, December.
    9. László Pál, 2017. "Empirical study of the improved UNIRANDI local search method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 929-952, December.
    10. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong & Yang, Hai, 2012. "Design of more equitable congestion pricing and tradable credit schemes for multimodal transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1273-1287.
    11. Charles Audet & Sébastien Le Digabel & Renaud Saltet, 2022. "Quantifying uncertainty with ensembles of surrogates for blackbox optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 29-66, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:79:y:2021:i:1:d:10.1007_s10589-021-00267-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.