IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v196y2023i1d10.1007_s10957-022-02138-4.html
   My bibliography  Save this article

A Function Approximation Approach for Parametric Optimization

Author

Listed:
  • Alberto De Marchi

    (Universität der Bundeswehr München)

  • Axel Dreves

    (Universität der Bundeswehr München)

  • Matthias Gerdts

    (Universität der Bundeswehr München)

  • Simon Gottschalk

    (Universität der Bundeswehr München)

  • Sergejs Rogovs

    (Universität der Bundeswehr München)

Abstract

We present a novel approach for approximating the primal and dual parameter-dependent solution functions of parametric optimization problems. We start with an equation reformulation of the first-order necessary optimality conditions. Then, we replace the primal and dual solutions with some approximating functions and find for some test parameters optimal coefficients as solution of a single nonlinear least-squares problem. Under mild assumptions it can be shown that stationary points are global minima and that the function approximations interpolate the solution functions at all test parameters. Further, we have a cheap function evaluation criterion to estimate the approximation error. Finally, we present some preliminary numerical results showing the viability of our approach.

Suggested Citation

  • Alberto De Marchi & Axel Dreves & Matthias Gerdts & Simon Gottschalk & Sergejs Rogovs, 2023. "A Function Approximation Approach for Parametric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 56-77, January.
  • Handle: RePEc:spr:joptap:v:196:y:2023:i:1:d:10.1007_s10957-022-02138-4
    DOI: 10.1007/s10957-022-02138-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02138-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02138-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Axel Dreves, 2019. "An algorithm for equilibrium selection in generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 73(3), pages 821-837, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:196:y:2023:i:1:d:10.1007_s10957-022-02138-4. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.