IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i2p417-440.html
   My bibliography  Save this article

Global convergence of modified multiplicative updates for nonnegative matrix factorization

Author

Listed:
  • Norikazu Takahashi
  • Ryota Hibi

Abstract

Nonnegative matrix factorization (NMF) is the problem of approximating a given nonnegative matrix by the product of two nonnegative matrices. The multiplicative updates proposed by Lee and Seung are widely used as efficient computational methods for NMF. However, the global convergence of these updates is not formally guaranteed because they are not defined for all pairs of nonnegative matrices. In this paper, we consider slightly modified versions of the original multiplicative updates and study their global convergence properties. The only difference between the modified updates and the original ones is that the former do not allow variables to take values less than a user-specified positive constant. Using Zangwill’s global convergence theorem, we prove that any sequence of solutions generated by either of those modified updates has at least one convergent subsequence and the limit of any convergent subsequence is a stationary point of the corresponding optimization problem. Furthermore, we propose algorithms based on the modified updates that always stop within a finite number of iterations. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Norikazu Takahashi & Ryota Hibi, 2014. "Global convergence of modified multiplicative updates for nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 57(2), pages 417-440, March.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:2:p:417-440
    DOI: 10.1007/s10589-013-9593-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9593-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9593-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. GILLIS, Nicolas & GLINEUR, François, 2008. "Nonnegative factorization and the maximum edge biclique problem," LIDAM Discussion Papers CORE 2008064, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. GILLIS, Nicolas & GLINEUR, François, 2011. "Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization," LIDAM Discussion Papers CORE 2011030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    4. Berry, Michael W. & Browne, Murray & Langville, Amy N. & Pauca, V. Paul & Plemmons, Robert J., 2007. "Algorithms and applications for approximate nonnegative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 155-173, September.
    5. Michael W. Berry & Murray Browne, 2005. "Email Surveillance Using Non-negative Matrix Factorization," Computational and Mathematical Organization Theory, Springer, vol. 11(3), pages 249-264, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Dongxiao & Wang, Hongcui & Jin, Di & Liu, Baolin, 2016. "A model framework for the enhancement of community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 602-612.
    2. Gillis, Nicolas & Glineur, François & Tuyttens, Daniel & Vandaele, Arnaud, 2015. "Heuristics for exact nonnegative matrix factorization," LIDAM Discussion Papers CORE 2015006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Norikazu Takahashi & Jiro Katayama & Masato Seki & Jun’ichi Takeuchi, 2018. "A unified global convergence analysis of multiplicative update rules for nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 71(1), pages 221-250, September.
    4. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.
    2. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    3. Duy Khuong Nguyen & Tu Bao Ho, 2017. "Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization," Journal of Global Optimization, Springer, vol. 68(2), pages 307-328, June.
    4. Norikazu Takahashi & Jiro Katayama & Masato Seki & Jun’ichi Takeuchi, 2018. "A unified global convergence analysis of multiplicative update rules for nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 71(1), pages 221-250, September.
    5. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    6. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    7. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    8. GILLIS, Nicolas & GLINEUR, François, 2011. "Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization," LIDAM Discussion Papers CORE 2011030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. FUJIWARA Yoshi & INOUE Hiroyasu & YAMAGUCHI Takayuki & AOYAMA Hideaki & TANAKA Takuma & KIKUCHI Kentaro, 2021. "Money Flow Network Among Firms' Accounts in a Regional Bank of Japan," Discussion papers 21005, Research Institute of Economy, Trade and Industry (RIETI).
    10. GILLIS, Nicolas & GLINEUR, François, 2010. "On the geometric interpretation of the nonnegative rank," LIDAM Discussion Papers CORE 2010051, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Bastian Schaefermeier & Gerd Stumme & Tom Hanika, 2021. "Topic space trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5759-5795, July.
    12. Yoshi Fujiwara & Rubaiyat Islam, 2021. "Bitcoin's Crypto Flow Network," Papers 2106.11446, arXiv.org, revised Jul 2021.
    13. Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.
    14. Hiroyasu Abe & Hiroshi Yadohisa, 2019. "Orthogonal nonnegative matrix tri-factorization based on Tweedie distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 825-853, December.
    15. Rundong Du & Da Kuang & Barry Drake & Haesun Park, 2017. "DC-NMF: nonnegative matrix factorization based on divide-and-conquer for fast clustering and topic modeling," Journal of Global Optimization, Springer, vol. 68(4), pages 777-798, August.
    16. Guowei Yang & Lin Zhang & Minghua Wan, 2022. "Exponential Graph Regularized Non-Negative Low-Rank Factorization for Robust Latent Representation," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    17. Hiroyasu Abe & Hiroshi Yadohisa, 2017. "A non-negative matrix factorization model based on the zero-inflated Tweedie distribution," Computational Statistics, Springer, vol. 32(2), pages 475-499, June.
    18. Zhang, Lingsong & Lu, Shu & Marron, J.S., 2015. "Nested nonnegative cone analysis," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 100-110.
    19. Soodabeh Asadi & Janez Povh, 2021. "A Block Coordinate Descent-Based Projected Gradient Algorithm for Orthogonal Non-Negative Matrix Factorization," Mathematics, MDPI, vol. 9(5), pages 1-22, March.
    20. Yong Gao & Jiajun Liu & Yan Xu & Lan Mu & Yu Liu, 2019. "A Spatiotemporal Constraint Non-Negative Matrix Factorization Model to Discover Intra-Urban Mobility Patterns from Taxi Trips," Sustainability, MDPI, vol. 11(15), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:2:p:417-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.