IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2915-d680067.html
   My bibliography  Save this article

Optimality Conditions, Qualifications and Approximation Method for a Class of Non-Lipschitz Mathematical Programs with Switching Constraints

Author

Listed:
  • Jinman Lv

    (School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)

  • Zhenhua Peng

    (Department of Mathematics, School of Sciences, Nanchang University, Nanchang 330031, China)

  • Zhongping Wan

    (School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)

Abstract

In this paper, we consider a class of mathematical programs with switching constraints (MPSCs) where the objective involves a non-Lipschitz term. Due to the non-Lipschitz continuity of the objective function, the existing constraint qualifications for local Lipschitz MPSCs are invalid to ensure that necessary conditions hold at the local minimizer. Therefore, we propose some MPSC-tailored qualifications which are related to the constraints and the non-Lipschitz term to ensure that local minimizers satisfy the necessary optimality conditions. Moreover, we study the weak, Mordukhovich, Bouligand, strongly (W-, M-, B-, S-) stationay, analyze what qualifications making local minimizers satisfy the (M-, B-, S-) stationay, and discuss the relationship between the given MPSC-tailored qualifications. Finally, an approximation method for solving the non-Lipschitz MPSCs is given, and we show that the accumulation point of the sequence generated by the approximation method satisfies S-stationary under the second-order necessary condition and MPSC Mangasarian-Fromovitz (MF) qualification.

Suggested Citation

  • Jinman Lv & Zhenhua Peng & Zhongping Wan, 2021. "Optimality Conditions, Qualifications and Approximation Method for a Class of Non-Lipschitz Mathematical Programs with Switching Constraints," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2915-:d:680067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yakui Huang & Hongwei Liu, 2016. "Smoothing projected Barzilai–Borwein method for constrained non-Lipschitz optimization," Computational Optimization and Applications, Springer, vol. 65(3), pages 671-698, December.
    2. Lijuan Wang & Qishu Yan, 2015. "Time Optimal Controls of Semilinear Heat Equation with Switching Control," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 263-278, April.
    3. Yan-Chao Liang & Jane J. Ye, 2021. "Optimality Conditions and Exact Penalty for Mathematical Programs with Switching Constraints," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    2. Zexian Liu & Hongwei Liu, 2019. "An Efficient Gradient Method with Approximately Optimal Stepsize Based on Tensor Model for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 608-633, May.
    3. Yu-Hong Dai & Yakui Huang & Xin-Wei Liu, 2019. "A family of spectral gradient methods for optimization," Computational Optimization and Applications, Springer, vol. 74(1), pages 43-65, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2915-:d:680067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.