IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v188y2021i3d10.1007_s10957-020-01806-7.html
   My bibliography  Save this article

Nearly Optimal First-Order Methods for Convex Optimization under Gradient Norm Measure: an Adaptive Regularization Approach

Author

Listed:
  • Masaru Ito

    (Nihon University)

  • Mituhiro Fukuda

    (Tokyo Institute of Technology)

Abstract

In the development of first-order methods for smooth (resp., composite) convex optimization problems, where smooth functions with Lipschitz continuous gradients are minimized, the gradient (resp., gradient mapping) norm becomes a fundamental optimality measure. Under this measure, a fixed iteration algorithm with the optimal iteration complexity for the smooth case is known, while determining this number of iteration to obtain a desired accuracy requires the prior knowledge of the distance from the initial point to the optimal solution set. In this paper, we report an adaptive regularization approach, which attains the nearly optimal iteration complexity without knowing the distance to the optimal solution set. To obtain further faster convergence adaptively, we secondly apply this approach to construct a first-order method that is adaptive to the Hölderian error bound condition (or equivalently, the Łojasiewicz gradient property), which covers moderately wide classes of applications. The proposed method attains nearly optimal iteration complexity with respect to the gradient mapping norm.

Suggested Citation

  • Masaru Ito & Mituhiro Fukuda, 2021. "Nearly Optimal First-Order Methods for Convex Optimization under Gradient Norm Measure: an Adaptive Regularization Approach," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 770-804, March.
  • Handle: RePEc:spr:joptap:v:188:y:2021:i:3:d:10.1007_s10957-020-01806-7
    DOI: 10.1007/s10957-020-01806-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01806-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01806-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Qihang Lin & Lin Xiao, 2015. "An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 633-674, April.
    3. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. NESTEROV, Yurii, 2015. "Universal gradient methods for convex optimization problems," LIDAM Reprints CORE 2701, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    2. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    3. Huynh Ngai & Ta Anh Son, 2022. "Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/k2)," Computational Optimization and Applications, Springer, vol. 83(2), pages 615-649, November.
    4. Masoud Ahookhosh & Arnold Neumaier, 2018. "Solving structured nonsmooth convex optimization with complexity $$\mathcal {O}(\varepsilon ^{-1/2})$$ O ( ε - 1 / 2 )," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 110-145, April.
    5. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
    7. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    8. Kimon Fountoulakis & Jacek Gondzio, 2016. "Performance of first- and second-order methods for $$\ell _1$$ ℓ 1 -regularized least squares problems," Computational Optimization and Applications, Springer, vol. 65(3), pages 605-635, December.
    9. Majid Jahani & Naga Venkata C. Gudapati & Chenxin Ma & Rachael Tappenden & Martin Takáč, 2021. "Fast and safe: accelerated gradient methods with optimality certificates and underestimate sequences," Computational Optimization and Applications, Springer, vol. 79(2), pages 369-404, June.
    10. Niao He & Anatoli Juditsky & Arkadi Nemirovski, 2015. "Mirror Prox algorithm for multi-term composite minimization and semi-separable problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 275-319, June.
    11. Jiaming Liang & Renato D. C. Monteiro & Chee-Khian Sim, 2021. "A FISTA-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems," Computational Optimization and Applications, Springer, vol. 79(3), pages 649-679, July.
    12. Yakui Huang & Hongwei Liu, 2016. "Smoothing projected Barzilai–Borwein method for constrained non-Lipschitz optimization," Computational Optimization and Applications, Springer, vol. 65(3), pages 671-698, December.
    13. Chin Pang Ho & Panos Parpas, 2019. "Empirical risk minimization: probabilistic complexity and stepsize strategy," Computational Optimization and Applications, Springer, vol. 73(2), pages 387-410, June.
    14. Olivier Fercoq & Zheng Qu, 2020. "Restarting the accelerated coordinate descent method with a rough strong convexity estimate," Computational Optimization and Applications, Springer, vol. 75(1), pages 63-91, January.
    15. Donghwan Kim & Jeffrey A. Fessler, 2017. "On the Convergence Analysis of the Optimized Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 187-205, January.
    16. Md Sarowar Morshed & Md Saiful Islam & Md. Noor-E-Alam, 2020. "Accelerated sampling Kaczmarz Motzkin algorithm for the linear feasibility problem," Journal of Global Optimization, Springer, vol. 77(2), pages 361-382, June.
    17. Qihang Lin & Runchao Ma & Yangyang Xu, 2022. "Complexity of an inexact proximal-point penalty method for constrained smooth non-convex optimization," Computational Optimization and Applications, Springer, vol. 82(1), pages 175-224, May.
    18. Stefania Bellavia & Gianmarco Gurioli & Benedetta Morini & Philippe Louis Toint, 2023. "The Impact of Noise on Evaluation Complexity: The Deterministic Trust-Region Case," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 700-729, February.
    19. Guillaume O. Berger & P.-A. Absil & Raphaël M. Jungers & Yurii Nesterov, 2020. "On the Quality of First-Order Approximation of Functions with Hölder Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 17-33, April.
    20. Hiva Ghanbari & Katya Scheinberg, 2018. "Proximal quasi-Newton methods for regularized convex optimization with linear and accelerated sublinear convergence rates," Computational Optimization and Applications, Springer, vol. 69(3), pages 597-627, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:188:y:2021:i:3:d:10.1007_s10957-020-01806-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.