IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v58y2014i3p707-756.html
   My bibliography  Save this article

A survey on multi-objective evolutionary algorithms for many-objective problems

Author

Listed:
  • Christian Lücken
  • Benjamín Barán
  • Carlos Brizuela

Abstract

Multi-objective evolutionary algorithms (MOEAs) are well-suited for solving several complex multi-objective problems with two or three objectives. However, as the number of conflicting objectives increases, the performance of most MOEAs is severely deteriorated. How to improve MOEAs’ performance when solving many-objective problems, i.e. problems with four or more conflicting objectives, is an important issue since a large number of this type of problems exists in science and engineering; thus, several researchers have proposed different alternatives. This paper presents a review of the use of MOEAs in many-objective problems describing the evolution of the field, the methods that were developed, as well as the main findings and open questions that need to be answered in order to continue shaping the field. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Christian Lücken & Benjamín Barán & Carlos Brizuela, 2014. "A survey on multi-objective evolutionary algorithms for many-objective problems," Computational Optimization and Applications, Springer, vol. 58(3), pages 707-756, July.
  • Handle: RePEc:spr:coopap:v:58:y:2014:i:3:p:707-756
    DOI: 10.1007/s10589-014-9644-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9644-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-014-9644-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Bader & Kalyanmoy Deb & Eckart Zitzler, 2010. "Faster Hypervolume-Based Search Using Monte Carlo Sampling," Lecture Notes in Economics and Mathematical Systems, in: Matthias Ehrgott & Boris Naujoks & Theodor J. Stewart & Jyrki Wallenius (ed.), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pages 313-326, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korotkov, Vladimir & Wu, Desheng, 2021. "Benchmarking project portfolios using optimality thresholds," Omega, Elsevier, vol. 99(C).
    2. Hua Li & Xiangfei Qiu & Qiuyi Xi & Ruogu Wang & Gang Zhang & Yanxin Wang & Bao Zhang, 2024. "Short-Term Optimal Scheduling of Power Grids Containing Pumped-Storage Power Station Based on Security Quantification," Energies, MDPI, vol. 17(17), pages 1-26, September.
    3. Mohamed Abouhawwash & Kalyanmoy Deb, 2021. "Reference point based evolutionary multi-objective optimization algorithms with convergence properties using KKTPM and ASF metrics," Journal of Heuristics, Springer, vol. 27(4), pages 575-614, August.
    4. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
    5. He, Li-Jun & Ju, Xue-Wei & Zhang, Wei-Bo, 2018. "A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEAAuthor-Name: Zhu, Guang-Yu," European Journal of Operational Research, Elsevier, vol. 265(3), pages 813-828.
    6. Korotkov, Vladimir & Wu, Desheng, 2020. "Evaluating the quality of solutions in project portfolio selection," Omega, Elsevier, vol. 91(C).
    7. Wang, Zheng & Zeng, Tiansheng & Chu, Xuening & Xue, Deyi, 2023. "Multi-objective deep reinforcement learning for optimal design of wind turbine blade," Renewable Energy, Elsevier, vol. 203(C), pages 854-869.
    8. Filipe Alves & Lino A. Costa & Ana Maria A. C. Rocha & Ana I. Pereira & Paulo Leitão, 2022. "The Sustainable Home Health Care Process Based on Multi-Criteria Decision-Support," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
    9. Wang Chen & Zhao Guohua, 2020. "Decomposition and adaptive weight adjustment method with biogeography/complex algorithm for many-objective optimization," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    10. Christian Lücken & Carlos A. Brizuela & Benjamín Barán, 2022. "Clustering-based multipopulation approaches in MOEA/D for many-objective problems," Computational Optimization and Applications, Springer, vol. 81(3), pages 789-828, April.
    11. Chen-Yu Chang & Pei-Fang Tsai, 2022. "Multiobjective Decision-Making Model for Power Scheduling Problem in Smart Homes," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    12. Long Wang & Ran Han & Tongguang Wang & Shitang Ke, 2018. "Uniform Decomposition and Positive-Gradient Differential Evolution for Multi-Objective Design of Wind Turbine Blade," Energies, MDPI, vol. 11(5), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivo Couckuyt & Dirk Deschrijver & Tom Dhaene, 2014. "Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization," Journal of Global Optimization, Springer, vol. 60(3), pages 575-594, November.
    2. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    3. Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 407-438, June.
    4. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    5. Luis Martí & Jesús García & Antonio Berlanga & José M. Molina, 2016. "MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm," Journal of Global Optimization, Springer, vol. 66(4), pages 729-768, December.
    6. Garcia-Teruel, Anna & DuPont, Bryony & Forehand, David I.M., 2021. "Hull geometry optimisation of wave energy converters: On the choice of the objective functions and the optimisation formulation," Applied Energy, Elsevier, vol. 298(C).
    7. Olacir R. Castro & Gian Mauricio Fritsche & Aurora Pozo, 2018. "Evaluating selection methods on hyper-heuristic multi-objective particle swarm optimization," Journal of Heuristics, Springer, vol. 24(4), pages 581-616, August.
    8. Joshua Q. Hale & Helin Zhu & Enlu Zhou, 2020. "Domination Measure: A New Metric for Solving Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 565-581, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:58:y:2014:i:3:p:707-756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.