IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v91y2020ics030504831730871x.html
   My bibliography  Save this article

Evaluating the quality of solutions in project portfolio selection

Author

Listed:
  • Korotkov, Vladimir
  • Wu, Desheng

Abstract

Assessing the quality of decisions while selecting project portfolios becomes an inherent part of the decision-making process when the project parameters are inaccurate or uncertain. Small adjustments to the initial parameters can lead to situations where the preferred portfolio no longer reflects the investor’s requirements. The paper studies the post-optimal analysis of the Pareto optimal portfolios chosen by Savage’s risk criteria. Stability characteristic, such as the stability function, is considered. Using the stability function, we evaluate the quality of feasible portfolios. This function indicates the robustness of portfolios to any changes in the initial data. Using the stability function the formula for calculating the optimality threshold is obtained, which determines the level of risk reduction when the selected Pareto optimal portfolio can obtain optimal properties. The performances of the stability function and the optimality threshold are shown in the case study using global risk assessments for projects participating in the Belt and Road Initiative. The computation results demonstrate the ability through the stability function to evaluate the quality and optimal properties of feasible project portfolios.

Suggested Citation

  • Korotkov, Vladimir & Wu, Desheng, 2020. "Evaluating the quality of solutions in project portfolio selection," Omega, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:jomega:v:91:y:2020:i:c:s030504831730871x
    DOI: 10.1016/j.omega.2019.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504831730871X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2019.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Nikulin, Yury & Mäkelä, Marko M., 2010. "Stability and accuracy functions for a multicriteria Boolean linear programming problem with parameterized principle of optimality "from Condorcet to Pareto"," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1497-1505, December.
    3. Yury Nikulin, 2009. "Stability and accuracy functions in a coalition game with bans, linear payoffs and antagonistic strategies," Annals of Operations Research, Springer, vol. 172(1), pages 25-35, November.
    4. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    5. Christian Lücken & Benjamín Barán & Carlos Brizuela, 2014. "A survey on multi-objective evolutionary algorithms for many-objective problems," Computational Optimization and Applications, Springer, vol. 58(3), pages 707-756, July.
    6. Nikulin, Y. & Karelkina, O. & Mäkelä, M.M., 2013. "On accuracy, robustness and tolerances in vector Boolean optimization," European Journal of Operational Research, Elsevier, vol. 224(3), pages 449-457.
    7. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Post-Print hal-01744501, HAL.
    8. David L. Olson & Desheng Dash Wu, 2017. "Enterprise Risk Management Models," Springer Texts in Business and Economics, Springer, edition 2, number 978-3-662-53785-5, June.
    9. Panos Xidonas & George Mavrotas & Theodore Krintas & John Psarras & Constantin Zopounidis, 2012. "Multicriteria Portfolio Management," Springer Optimization and Its Applications, Springer, edition 127, number 978-1-4614-3670-6, June.
    10. Merzifonluoglu, Yasemin, 2015. "Risk averse supply portfolio selection with supply, demand and spot market volatility," Omega, Elsevier, vol. 57(PA), pages 40-53.
    11. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    12. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    13. Markus Hirschberger & Ralph E. Steuer & Sebastian Utz & Maximilian Wimmer & Yue Qi, 2013. "Computing the Nondominated Surface in Tri-Criterion Portfolio Selection," Operations Research, INFORMS, vol. 61(1), pages 169-183, February.
    14. Sefair, Jorge A. & Méndez, Carlos Y. & Babat, Onur & Medaglia, Andrés L. & Zuluaga, Luis F., 2017. "Linear solution schemes for Mean-SemiVariance Project portfolio selection problems: An application in the oil and gas industry," Omega, Elsevier, vol. 68(C), pages 39-48.
    15. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    16. Nicholas G. Hall & Daniel Zhuoyu Long & Jin Qi & Melvyn Sim, 2015. "Managing Underperformance Risk in Project Portfolio Selection," Operations Research, INFORMS, vol. 63(3), pages 660-675, June.
    17. Anant Mishra & Sidhartha R. Das & James J. Murray, 2016. "Risk, Process Maturity, and Project Performance: An Empirical Analysis of US Federal Government Technology Projects," Production and Operations Management, Production and Operations Management Society, vol. 25(2), pages 210-232, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nomeda Dobrovolskienė & Anastasija Pozniak & Manuela Tvaronavičienė, 2021. "Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    2. Ren, Rui & Althof, Michael & Härdle, Wolfgang Karl, 2020. "Tail Risk Network Effects in the Cryptocurrency Market during the COVID-19 Crisis," IRTG 1792 Discussion Papers 2020-028, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Zhang, Xinwei & Yan, Yong & Wang, Lilin & Wang, Yang, 2024. "A ranking approach for robust portfolio decision analysis based on multilinear portfolio utility functions and incomplete preference information," Omega, Elsevier, vol. 122(C).
    4. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Korotkov, Vladimir & Wu, Desheng, 2021. "Benchmarking project portfolios using optimality thresholds," Omega, Elsevier, vol. 99(C).
    2. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    3. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    4. Shipra Agrawal & Yichuan Ding & Amin Saberi & Yinyu Ye, 2012. "Price of Correlations in Stochastic Optimization," Operations Research, INFORMS, vol. 60(1), pages 150-162, February.
    5. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    6. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    7. Nikulin, Y. & Karelkina, O. & Mäkelä, M.M., 2013. "On accuracy, robustness and tolerances in vector Boolean optimization," European Journal of Operational Research, Elsevier, vol. 224(3), pages 449-457.
    8. Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "Optimization Under Probabilistic Envelope Constraints," Operations Research, INFORMS, vol. 60(3), pages 682-699, June.
    9. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    10. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    11. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    12. Qinghe Sun & Li Chen & Mabel C. Chou & Qiang Meng, 2023. "Mitigating the financial risk behind emission cap compliance: A case in maritime transportation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 283-300, January.
    13. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    14. Xiong, Xing & Li, Yanzhi & Yang, Wenguo & Shen, Huaxiao, 2022. "Data-driven robust dual-sourcing inventory management under purchase price and demand uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    15. Zhaolin Hu & Jing Cao & L. Jeff Hong, 2012. "Robust Simulation of Global Warming Policies Using the DICE Model," Management Science, INFORMS, vol. 58(12), pages 2190-2206, December.
    16. Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "A Distributional Interpretation of Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 95-110, February.
    17. Majewski, Dinah Elena & Lampe, Matthias & Voll, Philip & Bardow, André, 2017. "TRusT: A Two-stage Robustness Trade-off approach for the design of decentralized energy supply systems," Energy, Elsevier, vol. 118(C), pages 590-599.
    18. Vishal Gupta & Paat Rusmevichientong, 2021. "Small-Data, Large-Scale Linear Optimization with Uncertain Objectives," Management Science, INFORMS, vol. 67(1), pages 220-241, January.
    19. Zhi Chen & Weijun Xie, 2021. "Regret in the Newsvendor Model with Demand and Yield Randomness," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4176-4197, November.
    20. Arash Gourtani & Huifu Xu & David Pozo & Tri-Dung Nguyen, 2016. "Robust unit commitment with $$n-1$$ n - 1 security criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 373-408, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:91:y:2020:i:c:s030504831730871x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.