IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v66y2016i4d10.1007_s10898-016-0415-7.html
   My bibliography  Save this article

MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm

Author

Listed:
  • Luis Martí

    (Universidade Federal Flumense)

  • Jesús García

    (Universidad Carlos III de Madrid)

  • Antonio Berlanga

    (Universidad Carlos III de Madrid)

  • José M. Molina

    (Universidad Carlos III de Madrid)

Abstract

The extension of estimation of distribution algorithms (EDAs) to the multi-objective domain has led to multi-objective optimization EDAs (MOEDAs). Most MOEDAs have limited themselves to porting single-objective EDAs to the multi-objective domain. Although MOEDAs have proved to be a valid approach, the last point is an obstacle to the achievement of a significant improvement regarding “standard” multi-objective optimization evolutionary algorithms. Adapting the model-building algorithm is one way to achieve a substantial advance. Most model-building schemes used so far by EDAs employ off-the-shelf machine learning methods. However, the model-building problem has particular requirements that those methods do not meet and even evade. The focus of this paper is on the model-building issue and how it has not been properly understood and addressed by most MOEDAs. We delve down into the roots of this matter and hypothesize about its causes. To gain a deeper understanding of the subject we propose a novel algorithm intended to overcome the drawbacks of current MOEDAs. This new algorithm is the multi-objective neural estimation of distribution algorithm (MONEDA). MONEDA uses a modified growing neural gas network for model-building (MB-GNG). MB-GNG is a custom-made clustering algorithm that meets the above demands. Thanks to its custom-made model-building algorithm, the preservation of elite individuals and its individual replacement scheme, MONEDA is capable of scalably solving continuous multi-objective optimization problems. It performs better than similar algorithms in terms of a set of quality indicators and computational resource requirements.

Suggested Citation

  • Luis Martí & Jesús García & Antonio Berlanga & José M. Molina, 2016. "MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm," Journal of Global Optimization, Springer, vol. 66(4), pages 729-768, December.
  • Handle: RePEc:spr:jglopt:v:66:y:2016:i:4:d:10.1007_s10898-016-0415-7
    DOI: 10.1007/s10898-016-0415-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0415-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0415-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimo Brockhoff & Eckart Zitzler, 2007. "Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective Subset Problem," Operations Research Proceedings, in: Karl-Heinz Waldmann & Ulrike M. Stocker (ed.), Operations Research Proceedings 2006, pages 423-429, Springer.
    2. Johannes Bader & Kalyanmoy Deb & Eckart Zitzler, 2010. "Faster Hypervolume-Based Search Using Monte Carlo Sampling," Lecture Notes in Economics and Mathematical Systems, in: Matthias Ehrgott & Boris Naujoks & Theodor J. Stewart & Jyrki Wallenius (ed.), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pages 313-326, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivo Couckuyt & Dirk Deschrijver & Tom Dhaene, 2014. "Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization," Journal of Global Optimization, Springer, vol. 60(3), pages 575-594, November.
    2. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    3. Christian Lücken & Benjamín Barán & Carlos Brizuela, 2014. "A survey on multi-objective evolutionary algorithms for many-objective problems," Computational Optimization and Applications, Springer, vol. 58(3), pages 707-756, July.
    4. Nguyen Thoai, 2012. "Criteria and dimension reduction of linear multiple criteria optimization problems," Journal of Global Optimization, Springer, vol. 52(3), pages 499-508, March.
    5. Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 407-438, June.
    6. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    7. Garcia-Teruel, Anna & DuPont, Bryony & Forehand, David I.M., 2021. "Hull geometry optimisation of wave energy converters: On the choice of the objective functions and the optimisation formulation," Applied Energy, Elsevier, vol. 298(C).
    8. Olacir R. Castro & Gian Mauricio Fritsche & Aurora Pozo, 2018. "Evaluating selection methods on hyper-heuristic multi-objective particle swarm optimization," Journal of Heuristics, Springer, vol. 24(4), pages 581-616, August.
    9. Joshua Q. Hale & Helin Zhu & Enlu Zhou, 2020. "Domination Measure: A New Metric for Solving Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 565-581, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:66:y:2016:i:4:d:10.1007_s10898-016-0415-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.