IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p11867-d920524.html
   My bibliography  Save this article

Multiobjective Decision-Making Model for Power Scheduling Problem in Smart Homes

Author

Listed:
  • Chen-Yu Chang

    (Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Pei-Fang Tsai

    (Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

The aim of this study was to solve power scheduling issues in smart homes to enable demand response in smart grids. The objective of demand response is to match demand with supply by reflecting supply expectations through consumer price signals, and especially to avoid peak demand during times of high prices and when supply is limited. Three objectives were considered: first, economic rationing by minimizing the total costs for consumers with the given hourly prices; second, to achieve better efficiency in terms of supply and greater stability in a power system by reducing peaks in usage or load, which is defined by minimizing the percentage of power rate; third, related to consumer comfort levels, by reducing variance in the schedule of appliances to actual usage periods requested. This multiobjective power scheduling problem for smart homes (PHPSH) was explored using a nondominated sorting genetic algorithm, called NSGA-II. The results showed that the Pareto-optimal solutions from NSGA-II are compatible with the weighted-sum-based model from the literature, and viable alternatives are available for end users with different weighted objectives.

Suggested Citation

  • Chen-Yu Chang & Pei-Fang Tsai, 2022. "Multiobjective Decision-Making Model for Power Scheduling Problem in Smart Homes," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11867-:d:920524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/11867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/11867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    2. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    3. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    4. Christian Lücken & Benjamín Barán & Carlos Brizuela, 2014. "A survey on multi-objective evolutionary algorithms for many-objective problems," Computational Optimization and Applications, Springer, vol. 58(3), pages 707-756, July.
    5. Tehreem Nasir & Syed Sabir Hussain Bukhari & Safdar Raza & Hafiz Mudassir Munir & Muhammad Abrar & Hafiz Abd ul Muqeet & Kamran Liaquat Bhatti & Jong-Suk Ro & Rooha Masroor, 2021. "Recent Challenges and Methodologies in Smart Grid Demand Side Management: State-of-the-Art Literature Review," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, August.
    6. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    2. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    5. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    6. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    7. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    8. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    9. Sofana Reka. S & Tomislav Dragičević & Pierluigi Siano & S.R. Sahaya Prabaharan, 2019. "Future Generation 5G Wireless Networks for Smart Grid: A Comprehensive Review," Energies, MDPI, vol. 12(11), pages 1-17, June.
    10. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    11. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    12. Roy, Anthony & Auger, François & Dupriez-Robin, Florian & Bourguet, Salvy & Tran, Quoc Tuan, 2020. "A multi-level Demand-Side Management algorithm for offgrid multi-source systems," Energy, Elsevier, vol. 191(C).
    13. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    14. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    15. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    16. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    17. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    18. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    19. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    20. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11867-:d:920524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.