IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i2p339-363.html
   My bibliography  Save this article

On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators

Author

Listed:
  • Xingju Cai
  • Guoyong Gu
  • Bingsheng He

Abstract

Nemirovski’s analysis (SIAM J. Optim. 15:229–251, 2005 ) indicates that the extragradient method has the O(1/t) convergence rate for variational inequalities with Lipschitz continuous monotone operators. For the same problems, in the last decades, a class of Fejér monotone projection and contraction methods is developed. Until now, only convergence results are available to these projection and contraction methods, though the numerical experiments indicate that they always outperform the extragradient method. The reason is that the former benefits from the ‘optimal’ step size in the contraction sense. In this paper, we prove the convergence rate under a unified conceptual framework, which includes the projection and contraction methods as special cases and thus perfects the theory of the existing projection and contraction methods. Preliminary numerical results demonstrate that the projection and contraction methods converge twice faster than the extragradient method. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Xingju Cai & Guoyong Gu & Bingsheng He, 2014. "On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators," Computational Optimization and Applications, Springer, vol. 57(2), pages 339-363, March.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:2:p:339-363
    DOI: 10.1007/s10589-013-9599-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9599-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9599-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. S. He & L. Z. Liao, 2002. "Improvements of Some Projection Methods for Monotone Nonlinear Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 111-128, January.
    2. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    3. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework II: general methods and numerical experiments," Computational Optimization and Applications, Springer, vol. 51(2), pages 681-708, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Q. L. Dong & Y. J. Cho & L. L. Zhong & Th. M. Rassias, 2018. "Inertial projection and contraction algorithms for variational inequalities," Journal of Global Optimization, Springer, vol. 70(3), pages 687-704, March.
    2. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    3. Jueyou Li & Guo Chen & Zhaoyang Dong & Zhiyou Wu, 2016. "A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints," Computational Optimization and Applications, Springer, vol. 64(3), pages 671-697, July.
    4. Duong Viet Thong & Phan Tu Vuong & Pham Ky Anh & Le Dung Muu, 2022. "A New Projection-type Method with Nondecreasing Adaptive Step-sizes for Pseudo-monotone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 22(4), pages 803-829, December.
    5. Pham Ngoc Anh, 2023. "New Outer Proximal Methods for Solving Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 479-501, August.
    6. Lateef Olakunle Jolaoso & Maggie Aphane, 2020. "A Generalized Viscosity Inertial Projection and Contraction Method for Pseudomonotone Variational Inequality and Fixed Point Problems," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    7. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    8. Q. L. Dong & Y. C. Tang & Y. J. Cho & Th. M. Rassias, 2018. "“Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem," Journal of Global Optimization, Springer, vol. 71(2), pages 341-360, June.
    9. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Gu & Jianlin Jiang & Shun Zhang, 2023. "Distributionally robust Weber problem with uncertain demand," Computational Optimization and Applications, Springer, vol. 85(3), pages 705-752, July.
    2. M.A. Noor, 2002. "Proximal Methods for Mixed Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 453-459, November.
    3. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    4. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework II: general methods and numerical experiments," Computational Optimization and Applications, Springer, vol. 51(2), pages 681-708, March.
    5. He, Bingsheng & He, Xiao-Zheng & Liu, Henry X. & Wu, Ting, 2009. "Self-adaptive projection method for co-coercive variational inequalities," European Journal of Operational Research, Elsevier, vol. 196(1), pages 43-48, July.
    6. M.A. Noor, 2002. "Proximal Methods for Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 447-452, November.
    7. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    8. Min Tao & Xiaoming Yuan, 2012. "An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures," Computational Optimization and Applications, Springer, vol. 52(2), pages 439-461, June.
    9. Bing-sheng He & Wei Xu & Hai Yang & Xiao-Ming Yuan, 2011. "Solving Over-production and Supply-guarantee Problems in Economic Equilibria," Networks and Spatial Economics, Springer, vol. 11(1), pages 127-138, March.
    10. M. Li & H. Shao & B. He, 2007. "An inexact logarithmic-quadratic proximal augmented Lagrangian method for a class of constrained variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 183-201, October.
    11. M.A. Noor, 2003. "Extragradient Methods for Pseudomonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 475-488, June.
    12. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    13. Min Zhang & Deren Han & Gang Qian & Xihong Yan, 2012. "A New Decomposition Method for Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 675-695, March.
    14. L. Z. Liao, 2005. "A Continuous Method for Convex Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 207-226, January.
    15. Zhengyong Zhou & Bo Yu, 2014. "A smoothing homotopy method for variational inequality problems on polyhedral convex sets," Journal of Global Optimization, Springer, vol. 58(1), pages 151-168, January.
    16. Deren Han & Wei Xu & Hai Yang, 2010. "Solving a class of variational inequalities with inexact oracle operators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 427-452, June.
    17. He, Bingsheng & He, Xiao-Zheng & Liu, Henry X., 2010. "Solving a class of constrained 'black-box' inverse variational inequalities," European Journal of Operational Research, Elsevier, vol. 204(3), pages 391-401, August.
    18. Li, Min & Yuan, Xiao-Ming, 2008. "An APPA-based descent method with optimal step-sizes for monotone variational inequalities," European Journal of Operational Research, Elsevier, vol. 186(2), pages 486-495, April.
    19. K. Wang & D. R. Han & L. L. Xu, 2013. "A Parallel Splitting Method for Separable Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 138-158, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:2:p:339-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.