IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v152y2012i3d10.1007_s10957-011-9931-2.html
   My bibliography  Save this article

A New Decomposition Method for Variational Inequalities with Linear Constraints

Author

Listed:
  • Min Zhang

    (Nanjing Normal University)

  • Deren Han

    (Nanjing Normal University)

  • Gang Qian

    (Nanjing Normal University)

  • Xihong Yan

    (Taiyuan Normal University)

Abstract

We propose a new decomposition method for solving a class of monotone variational inequalities with linear constraints. The proposed method needs only to solve a well-conditioned system of nonlinear equations, which is much easier than a variational inequality, the subproblem in the classic alternating direction methods. To make the method more flexible and practical, we solve the sub-problems approximately. We adopt a self-adaptive rule to adjust the parameter, which can improve the numerical performance of the algorithm. Under mild conditions, the underlying mapping be monotone and the solution set of the problem be nonempty, we prove the global convergence of the proposed algorithm. Finally, we report some preliminary computational results, which demonstrate the promising performance of the new algorithm.

Suggested Citation

  • Min Zhang & Deren Han & Gang Qian & Xihong Yan, 2012. "A New Decomposition Method for Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 675-695, March.
  • Handle: RePEc:spr:joptap:v:152:y:2012:i:3:d:10.1007_s10957-011-9931-2
    DOI: 10.1007/s10957-011-9931-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9931-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9931-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. S. He & L. Z. Liao, 2002. "Improvements of Some Projection Methods for Monotone Nonlinear Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 111-128, January.
    2. D. Han, 2007. "Inexact Operator Splitting Methods with Selfadaptive Strategy for Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 227-243, February.
    3. B. S. He & H. Yang & Q. Meng & D. R. Han, 2002. "Modified Goldstein–Levitin–Polyak Projection Method for Asymmetric Strongly Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 129-143, January.
    4. Anna Nagurney & Padma Ramanujam, 1996. "Transportation Network Policy Modeling with Goal Targets and Generalized Penalty Functions," Transportation Science, INFORMS, vol. 30(1), pages 3-13, February.
    5. D.R. Han & H.K. Lo, 2002. "New Alternating Direction Method for a Class of Nonlinear Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 549-560, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deren Han & Wei Xu & Hai Yang, 2010. "Solving a class of variational inequalities with inexact oracle operators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 427-452, June.
    2. Xiaomei Dong & Xingju Cai & Deren Han & Zhili Ge, 2020. "Solving a Class of Variational Inequality Problems with a New Inexact Strategy," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-20, January.
    3. He, Bingsheng & He, Xiao-Zheng & Liu, Henry X. & Wu, Ting, 2009. "Self-adaptive projection method for co-coercive variational inequalities," European Journal of Operational Research, Elsevier, vol. 196(1), pages 43-48, July.
    4. B. S. He & L. Z. Liao & H. Yang, 1999. "Decomposition Method for a Class of Monotone Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 603-622, December.
    5. M.A. Noor, 2002. "Proximal Methods for Mixed Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 453-459, November.
    6. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    7. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    8. D.R. Han & H.K. Lo, 2002. "New Alternating Direction Method for a Class of Nonlinear Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 549-560, March.
    9. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    10. Lo, Hong K. & Szeto, W.Y., 2005. "Road pricing modeling for hyper-congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 705-722.
    11. B. S. He & H. Yang & S. L. Wang, 2000. "Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 337-356, August.
    12. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework II: general methods and numerical experiments," Computational Optimization and Applications, Springer, vol. 51(2), pages 681-708, March.
    13. Xingju Cai & Guoyong Gu & Bingsheng He, 2014. "On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators," Computational Optimization and Applications, Springer, vol. 57(2), pages 339-363, March.
    14. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    15. L. Z. Liao, 2005. "A Continuous Method for Convex Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 207-226, January.
    16. Li, Min & Liao, Li-Zhi & Yuan, Xiao-ming, 2008. "A modified descent method for co-coercive variational inequalities," European Journal of Operational Research, Elsevier, vol. 189(2), pages 310-323, September.
    17. Xu Zhang & Cailian Li & Longcheng Zhang & Yaling Hu & Zheng Peng, 2024. "Convergence-Accelerated Fixed-Time Dynamical Methods for Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 600-628, October.
    18. Z. K. Jiang & X. M. Yuan, 2010. "New Parallel Descent-like Method for Solving a Class of Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 311-323, May.
    19. Siu, Barbara W.Y. & Lo, Hong K., 2008. "Doubly uncertain transportation network: Degradable capacity and stochastic demand," European Journal of Operational Research, Elsevier, vol. 191(1), pages 166-181, November.
    20. M.A. Noor, 2002. "Proximal Methods for Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 447-452, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:152:y:2012:i:3:d:10.1007_s10957-011-9931-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.